精英家教网 > 高中数学 > 题目详情
8.若圆O2:(x-3)2+(y+3)2=4关于直线l:ax+4y-6=0对称,则直线l的斜率是-$\frac{3}{2}$.

分析 由圆O2:(x-3)2+(y+3)2=4关于直线l:ax+4y-6=0对称,得到ax+4y-6=0过圆心,由此能求出结果.

解答 解:∵圆O2:(x-3)2+(y+3)2=4关于直线l:ax+4y-6=0对称,
∴ax+4y-6=0过圆心(3,-3),即3a-12-6=0,
解得a=6,
∴直线l的斜率是-$\frac{3}{2}$.
故答案为:-$\frac{3}{2}$.

点评 本题考查直线l的斜率的求法,是基础题,解题时要认真审题,注意直线与圆的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.符号[x]表示不超过x的最大整数,如[π]=3,[-1.08]=-2,定义函数f(x)=x-[x].给出下列五个命题:
①函数f(x)的定义域是R,值域为[0,1];       
②方程$f(x)=\frac{1}{2}$有无数个解;
③函数f(x)是周期函数;                      
④函数f(x)是增函数.
⑤函数$F(x)=f(x)+\frac{1}{2}x-1$有3个零点
其中正确命题的序号有②③⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.命题“若x-1=1,则2x+1=3”的逆否命题是(  )
A.若2x+1=3,则x-1=1B.若x-1≠1,则2x+1≠3
C.若2x+1≠3,则x-1≠1D.若2x+1≠3,则x-1=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)设A={x|x是小于9的正整数},B={1,2,3},求A∩B,∁AB;
(2)已知集合A={x|-3<x<1},B={x|2<x<10},求A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,AB=3,BC=4,∠ABC=90°,若使△ABC绕直线BC旋转一周,则所形成的几何体的体积是(  )
A.12πB.16πC.36πD.48π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上各取两个点,将其坐标记录于表中:
x3-24$\sqrt{2}$
y-2$\sqrt{3}$0-4$\frac{\sqrt{2}}{2}$
(1)求C1,C2的标准方程;
(2)已知直线l过C2的焦点F并与C1交于不同的两点M,N,且满足$\overrightarrow{OM}$⊥$\overrightarrow{ON}$.求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.给出下列命题:
①对于任意向量$\overrightarrow{a}$、$\overrightarrow{b}$,必有|$\overrightarrow{a}$+$\overrightarrow{b}$|≤|$\overrightarrow{a}$|+|$\overrightarrow{b}$|;
②若|$\overrightarrow a$|=|$\overrightarrow b$|,则$\overrightarrow a$=$\overrightarrow b$;
③($\overrightarrow a$•$\overrightarrow b$)•$\overrightarrow c$=$\overrightarrow a$•($\overrightarrow b$•$\overrightarrow c$);
④$\overrightarrow a$∥$\overrightarrow b$,$\overrightarrow b$∥$\overrightarrow c$,则$\overrightarrow a$∥$\overrightarrow c$.
其中正确的命题序号①.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某流程框图如图所示,则输出的s的值是24;

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列函数中,是奇函数的是(  )
A.f(x)=x2+1B.f(x)=|x+1|C.f(x)=x3+1D.f(x)=x+$\frac{1}{x}$

查看答案和解析>>

同步练习册答案