精英家教网 > 高中数学 > 题目详情
8.不等式${(a+1)^{-\frac{1}{4}}}<{(3-2a)^{-\frac{1}{4}}}$的解集是($\frac{2}{3}$,$\frac{3}{2}$).

分析 设函数y=${x}^{-\frac{1}{4}}$,利用其单调性,得到底数的大小.

解答 解:设函数y=${x}^{-\frac{1}{4}}$,因为此函数在(0,+∞)是减函数,又${(a+1)^{-\frac{1}{4}}}<{(3-2a)^{-\frac{1}{4}}}$,
所以a+1>3-2a>0,
解得$\frac{2}{3}<a<\frac{3}{2}$;
故答案为:$(\frac{2}{3},\frac{3}{2})$.

点评 本题考查了利用函数的单调性解不等式;关键是构造幂函数,明确单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=Asin(wx+φ)(x∈R,w>0,0<φ<$\frac{π}{2}$)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)求函数g(x)=f(x-$\frac{π}{12}$)-f(x+$\frac{π}{12}$)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在等腰直角三角形ABC中,角C为直角.在∠ACB内部任意作一条射线CM,与线段AB交于点M,则AM<AC的概率(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x3+ax2-x+c,且$a=f'(\frac{2}{3})$.
(1)求a的值;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,已知a=80,b=100,∠A=45°,此三角形的解的情况有2种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设数列{an}的通项公式为an=4n-2
(1)设cn=$\frac{{a}_{n}+2}{{2}^{{a}_{n}}}$,求数列{cn}的前n项和Sn
(2)设bn=$\frac{4}{{a}_{n}•{a}_{n+1}}$,Tn是数列{bn}的前n项和,求使得Tn<$\frac{m}{20}$对所有n∈N*都成立的最小正整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若关于x的不等式|2x-1|≥|1+a|-|2-a|对任意实数a恒成立,则x的取值范围是(  )
A.(-∞,0]∪[1,+∞)B.[0,1]C.(-∞,-1]∪[2,+∞)D.[-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.观察式子:1+$\frac{1}{{2}^{2}}$<$\frac{3}{2}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<$\frac{5}{3}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<$\frac{7}{4}$,…,则可归纳出式子为(  )
A.1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…<$\frac{1}{2n-1}$B.1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…$\frac{1}{{n}^{2}}$<$\frac{1}{2n-1}$
C.1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…$\frac{1}{{n}^{2}}$<$\frac{2n-1}{n}$D.1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…$\frac{1}{{n}^{2}}$<$\frac{2n}{2n+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知△ABC中,$a=\sqrt{2}$,$b=\sqrt{3}$,B=60°,那么∠A=(  )
A.45°B.90°C.135°或45°D.150°或30°

查看答案和解析>>

同步练习册答案