精英家教网 > 高中数学 > 题目详情

【题目】设数列是以2为首项,1为公差的等差数列,是以1为首项,2为公比的等比数列,则( )

A.1033B.1034C.2057D.2058

【答案】A

【解析】

首先根据数列{an}是以2为首项,1为公差的等差数列,{bn}是以1为首项,2为公比的等比数列,求出等差数列和等比数列的通项公式,然后根据ab1+ab2+…+ab10=1+2+23+25+…+29+10进行求和.

解:数列{an}是以2为首项,1为公差的等差数列,

∴an=2+n-1×1=n+1

∵{bn}是以1为首项,2为公比的等比数列,

∴bn=1×2n-1

依题意有:ab1+ab2+…+ab10=1+2+22+23+25+…+29+10=1033

故选A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为的正方形.且,点的中点.

1)求证:

2)求平面与平面所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,一个焦点为

1)求椭圆的方程;

2)若直线轴交于点,与椭圆交于两点,线段的垂直平分线与轴交于点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修44:坐标系与参数方程]:在直角坐标系中,直线的参数方程为t为参数,),以坐标原点为极点,以x轴的非负半轴为极轴,建立极坐标系,曲线C的极坐标方程为,已知直线与曲线C交于不同的两点AB

(1)求直线的普通方程和曲线C的直角坐标方程;

(2)P(12),求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂要建造一个长方体无盖贮水池,其容积为,深3m.如果池底每平方米的造价为200元,池壁每平方米的造价为150元,怎样设计水池能使总造价最低?最低总造价是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某投资公司计划投资AB两种金融产品,根据市场调查与预测,A产品的利润y1与投资金额x的函数关系为y118B产品的利润y2与投资金额x的函数关系为y2(注:利润与投资金额单位:万元).

(1)该公司已有100万元资金,并全部投入AB两种产品中,其中x万元资金投入A产品,试把AB两种产品利润总和表示为x的函数,并写出定义域;

(2)在(1)的条件下,试问:怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

中,内角对边的边长分别是,已知

的面积等于,求

,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,焦距为.

(1)求的方程;

(2)若斜率为的直线与椭圆交于两点(点均在第一象限),为坐标原点.

①证明:直线的斜率依次成等比数列.

②若关于轴对称,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆及直线.

(1)证明:不论取什么实数,直线与圆C总相交;

(2)求直线被圆C截得的弦长的最小值及此时的直线方程.

查看答案和解析>>

同步练习册答案