精英家教网 > 高中数学 > 题目详情
4.在二项式${({\sqrt{x}+\frac{1}{{2•\root{6}{x}}}})^n}$的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{5}{12}$

分析 利用二项式定理的通项公式、等差数列的性质可得n,再利用通项公式可得有理项与无理项的项数.利用“插空法”及其排列公式即可得出概率.

解答 解:在二项式${({\sqrt{x}+\frac{1}{{2•\root{6}{x}}}})^n}$的展开式中,前三项分别为:$(\sqrt{x})^{n}$,${∁}_{n}^{1}(\sqrt{x})^{n-1}(\frac{1}{2\root{6}{x}})$即$\frac{1}{2}n{x}^{\frac{3n-4}{6}}$,${∁}_{n}^{2}(\sqrt{x})^{n-2}(\frac{1}{2\root{6}{x}})^{2}$即$\frac{n(n-1)}{8}{x}^{\frac{3n-8}{6}}$.
∵前三项的系数成等差数列,
∴$2×\frac{1}{2}n$=1+$\frac{n(n-1)}{8}$,
化为:n2-9n+8=0,
解得n=8.
由通项公式可得:Tr+1=${∁}_{8}^{r}$$(\sqrt{x})^{8-r}$$(\frac{1}{2\root{6}{x}})^{r}$=$(\frac{1}{2})^{r}$${∁}_{8}^{r}$${x}^{4-\frac{2r}{3}}$.
可知当r=0,3,6时,为有理项,其余6项为无理项.
∴有理项都互不相邻的概率p=$\frac{{A}_{7}^{3}{A}_{6}^{6}}{{A}_{9}^{9}}$=$\frac{5}{12}$.
故选:D.

点评 本题考查了二项式定理的应用、等差数列的性质、“插空法”、排列公式、概率计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\frac{1}{3}$x3+ax2+2x+2的图象在点(x0,f(x0))处的切线与直线x+y+1=0垂直,则实数a的取值范围为(  )
A.[-1,1]B.(-1,1)C.(-∞,-1]∪[1,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知抛物线y2=2px(p>0)的焦点为F,准线为l,过点F的直线交抛物线于A,B两点,过点A作准线l的垂线,垂足为E,当A点的坐标为(3,y1)时,△AEF为正三角形,则此时△OAB的面积为$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=ln(1-ex)(x<0),若f(a)-2a=f(b)-3b,则a,b的大小关系为a>b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知向量$\overrightarrow a$与向量$\overrightarrow b$的夹角为$\frac{π}{3}$,且$|{\overrightarrow a}|=3,|{\overrightarrow b}|=4$,则$(3\overrightarrow a-\overrightarrow b)•(\overrightarrow a+\overrightarrow b)$=23.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数$f(x)=Acos(wx+φ)(w>0,|φ|<\frac{π}{2})$的部分图象如图所示,其中N,P的坐标分别为$(\frac{5}{8}π,-A),(\frac{11}{8}π,-0)$,则函数f(x)的单调递减区间不可能为(  )
A.$[\frac{π}{8},\frac{5π}{8}]$B.$[-\frac{7π}{8},-\frac{3π}{8}]$C.$[\frac{9π}{4},\frac{21π}{8}]$D.$[\frac{9π}{8},\frac{33π}{8}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.据统计,2015年“双11”天猫总成交金额突破912亿元.某购物网站为优化营销策略,对在11月11日当天在该网站进行网购消费且消费金额不超过1000元的1000名网购者(其中有女性800名,男性200名)进行抽样分析.采用根据性别分层抽样的方法从这1000名网购者中抽取100名进行分析,得到下表:(消费金额单位:元)
女性消费情况:
消费金额(0,200)[200,400)[400,600)[600,800)[800,1000]
人数5101547x
男性消费情况:
消费金额(0,200)[200,400)[400,600)[600,800)[800,1000]
人数2310y2
(Ⅰ)计算x,y的值;在抽出的100名且消费金额在[800,1000](单位:元)的网购者中随机选出两名发放网购红包,求选出的两名网购者恰好是一男一女的概率;
女士男士总计
网购达人
非网购达人
总计
(Ⅱ)若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”,根据以上统计数据填写2×2列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为‘网购达人’与性别有关?”
附:
P(k2≥k00.100.050.0250.0100.005
k02.7063.8415.0246.6357.879
(k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,根据该程序框图,若输出的y为2,则输入的x的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=ex-ax-1,g(x)=ln(ex-1)-lnx,若存在m>0,使f(g(m))>f(m)成立,则a的取值范图是(1,+∞).

查看答案和解析>>

同步练习册答案