精英家教网 > 高中数学 > 题目详情
3.如图,AB是圆O的一条切线,切点为B,直线ABD,CFD,CGE都是圆O的割线,已知AC=AB.
(1)若CG=1,CD=4,求$\frac{DE}{GF}$的值;
(2)求证:FG∥AC.

分析 (1)根据圆内接四边形的性质,证出∠CGF=∠CDE且∠CFG=∠CED,可得△CGF∽△CDE,因此$\frac{DE}{GF}=\frac{CD}{CG}$;
(2)根据切割线定理证出AB2=AD•AE,所以AC2=AD•AE,证$\frac{AD}{AC}=\frac{AC}{AE}$,结合∠EAC=∠DAC得到△ADC∽△ACE,所以∠ADC=∠ACE.再根据圆内接四边形的性质得∠ADC=∠EGF,从而∠EGF=∠ACE,可得GF∥AC.

解答 (1)解:由题意可得:G,E,D,F四点共圆,∴∠CGF=∠CDE,∠CFG=∠CED,
∴△CGF~△CDE,
∴$\frac{DE}{GF}=\frac{CD}{CG}$,
又∵CG=1,CD=4,∴$\frac{DE}{FG}=4$
(2)证明:因为AB为切线,AE为割线,AB2=AD•AE,
又因为AC=AB,所以AD•AE=AC2
所以$\frac{AD}{AC}=\frac{AC}{AE}$,
又因为∠EAC=∠DAC,所以△ADC~△ACE,所以∠ADC=∠ACE,
又因为∠ADC=∠EGF,所以∠EGF=∠ACE,所以FG∥AC

点评 本题给出圆的切线与割线,求证直线互相平行,并求线段的比值.着重考查了切割线定理、圆内接四边形的性质、相似三角形的判定与性质等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.定义在R上的函数f(x)满足:f(m+n)=f(m)+f(n)-2对任意m、n∈R恒成立.当x>0时,f(x)>2.
(1)求证:f(x)是R上的单调递增函数;
(2)若f(-3)=-7,且不等式f(t2+at-a)≥-7对任意t∈[-2,2]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.给定下列四个命题:
①若$\frac{1}{a}$<$\frac{1}{b}$<0,则b2>a2
②已知直线l,平面α,β为不重合的两个平面,若l⊥α,且α⊥β,则l∥β;
③若-1,a,b,c,-16成等比数列,则b=-4;
④三棱锥的四个面可以都是直角三角形.
其中真命题编号是①③④(写出所有真命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)求函数f(x)=$\sqrt{{x^2}+x-1}$+$\frac{1}{{{x^2}-2x+1}}$的定义域;
(2)求函数f(x)=$\frac{{\sqrt{|{x-2}|-1}}}{(x-3)(x-1)}$的定义域;
(3)已知函数y=f(x2-1)定义域是[-1,3],则y=f(2x+1)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知点P是抛物线x=$\frac{1}{4}$y2上的一个动点,则点P到点A(-1,2)的距离与点P到y轴的距离之和的最小值为(  )
A.$2\sqrt{2}$B.$2\sqrt{2}-1$C.$\sqrt{5}-1$D.$\sqrt{5}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知异面直线a,b所成的角为60°,过空间一定点P作直线l,是l与a,b所成的角均为60°,这样的直线l有3条.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知α∈($\frac{π}{4}$,$\frac{π}{2}$),a=(cosα)cosα,b=(sinα)cosα,c=(cosα)sinα,则(  )
A.a<b<cB.a<c<bC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.总体由20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为01.
78166572080263140702436997280198
32049234493582003623486969387481

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,M、N、P分别为空间四边形ABCD的边AB,BC,CD上的中点,求证:
(1)AC∥平面MNP,
(2)平面MNP与平面ACD的交线与AC平行.

查看答案和解析>>

同步练习册答案