精英家教网 > 高中数学 > 题目详情
11.(1)求函数f(x)=$\sqrt{{x^2}+x-1}$+$\frac{1}{{{x^2}-2x+1}}$的定义域;
(2)求函数f(x)=$\frac{{\sqrt{|{x-2}|-1}}}{(x-3)(x-1)}$的定义域;
(3)已知函数y=f(x2-1)定义域是[-1,3],则y=f(2x+1)的定义域.

分析 (1)(2)分别由根式内部的代数式大于等于0,分式的分母不为0求解不等式组可得答案;
(3)由函数y=f(x2-1)定义域求得f(x)的定义域,再由2x+1在f(x)的定义域内求得x的范围得答案.

解答 解:(1)由$\left\{\begin{array}{l}{{x}^{2}+x-1≥0}\\{{x}^{2}-2x+1≠0}\end{array}\right.$,解得$x≤\frac{-1-\sqrt{5}}{2}$,或$x≥\frac{-1+\sqrt{5}}{2}$且x≠1.
∴函数f(x)=$\sqrt{{x^2}+x-1}$+$\frac{1}{{{x^2}-2x+1}}$的定义域为(-∞,$\frac{-1-\sqrt{5}}{2}$]∪[$\frac{-1+\sqrt{5}}{2}$,1)∪(1,+∞);
(2)由$\left\{\begin{array}{l}{|x-2|-1≥0}\\{(x-3)(x-1)≠0}\end{array}\right.$,解得x<1或x>3.
∴函数f(x)=$\frac{{\sqrt{|{x-2}|-1}}}{(x-3)(x-1)}$的定义域为(-∞,1)∪(3,+∞);
(3)由题意,-1≤x≤3,∴,2≤x-1≤2,故f(x)的定义域为[-2,2],
∴令-2≤2x+1≤2,解得$-\frac{3}{2}≤x≤\frac{1}{2}$,
故y=f(2x+1)的定义域是[-$\frac{3}{2},\frac{1}{2}$].

点评 本题考查函数的定义域及其求法,考查不等式组的解法,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.等比数列{an},Sn是{an}的前n项和.若a1=1,a4=8,则S6=63.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如果函数f(x)=ax(ax-3a2-1)(a>0且a≠1)在区间(-∞,0]上是减函数,那么实数a的取值范围是(  )
A.$(0,\frac{{\sqrt{3}}}{3}]$B.$(0,\frac{{\sqrt{3}}}{3}]∪$(1,+∞)C.$[\frac{{\sqrt{3}}}{3},1)$D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.有五个命题如下:
(1)集合N*中最小元素是1;
(2)若a∈N*,b∈N*,则(a-b)∈N*
(3)空集是任何集合的真子集;
(4)区间[2,4]是函数f(x)=x2-2x+3的一个单调增区间;
(5)若集合A={x|1<x<3},集合B={t|1<t<3},则A≠B;
其中正确的命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知x,y,z∈R*,满足x-2y+3z=0,则$\frac{{y}^{2}}{xz}$的最小值是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{1}{x+1}$.
(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论;
(2)求该函数在区间[1,4]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,AB是圆O的一条切线,切点为B,直线ABD,CFD,CGE都是圆O的割线,已知AC=AB.
(1)若CG=1,CD=4,求$\frac{DE}{GF}$的值;
(2)求证:FG∥AC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,AB⊥AD,AB∥CD,CD=2AB=2AD=2,PB⊥底面ABCD,E是PC上的点.
(1)求证:BD⊥平面PBC;
(2)设PB>1,若E是PC的中点,且直线PD与平面EDB所成角的正弦值为$\frac{{\sqrt{2}}}{3}$,求二面角P-BD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知i是虚数单位,则i+|-i|在复平面上对应的点是(  )
A.(1,0)B.(0,1)C.(1,1)D.(1,-1)

查看答案和解析>>

同步练习册答案