分析 (1)推导出BD⊥PB,BD⊥BC,BD⊥平面PBC.
(2)以B为原点,建立空间直角坐标系,求出平面EDB的法向量和平面PBD的法向量,由此能求出二面角P-BD-E的余弦值.
解答 证明:(1)∵PB⊥平面ABCD,BD?平面ABCD,![]()
∴BD⊥PB,…(2分)
由题意知AB=1,AD=1,CD=2,
∴$BD=BC=\sqrt{2}$,∴BD2+BC2=DC2,
∴BD⊥BC,又BC∩PB=B,
∴BD⊥平面PBC.…(6分)
解:(2)以B为原点,建立空间直角坐标系如图3所示,
则B(0,0,0),D(1,1,0),C(1,-1,0),设P(0,0,a)(a>0),
则E($\frac{1}{2},-\frac{1}{2}$,$\frac{a}{2}$),$\overrightarrow{BD}$=(1,1,0),$\overrightarrow{BE}$=($\frac{1}{2},-\frac{1}{2},\frac{a}{2}$),$\overrightarrow{PD}$=(1,1,-a),
设$\overrightarrow{n}$=(x,y,z)为平面EDB的法向量,
则$\overrightarrow{n}•\overrightarrow{BD}$=0,$\overrightarrow{n}•\overrightarrow{BE}=0$,
即$\left\{{\begin{array}{l}{x+y=0}\\{x-y+az=0}\end{array}}\right.$,取x=a,y=-a,z=-2,则$\overrightarrow{n}$=(a,-a,-2).
设直线PD与平面EDB所成角为θ,
依题意,sinθ=|cos<$\overrightarrow{PD},\overrightarrow{n}$>|=$\frac{|\overrightarrow{PD}•\overrightarrow{n}|}{|\overrightarrow{PD}|•|\overrightarrow{n}|}$=$\frac{2a}{\sqrt{2}({a}^{2}+2)}$=$\frac{\sqrt{2}}{3}$,
解得a=2或a=1(舍),…(8分)
由(1)知BC⊥BD,BC⊥PB,
∴BC⊥平面PBD,
∴$\overrightarrow{BC}$=(1,-1,0)为平面PBD的法向量,
当a=2时,$\overrightarrow{n}$=(2,-2,-2),cos<$\overrightarrow{BC},\overrightarrow{n}$>=$\frac{|\overrightarrow{BC}•\overrightarrow{n}|}{|\overrightarrow{BC}|•|\overrightarrow{n}|}$=$\frac{\sqrt{6}}{3}$,
由图形得二面角P-BD-E为锐角,所以其余弦值为$\frac{{\sqrt{6}}}{3}$.…(12分)
点评 本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | 吸烟人患肺癌的概率为99% | |
| B. | 认为“吸烟与患肺癌有关”犯错误的概率不超过1% | |
| C. | 吸烟的人一定会患肺癌 | |
| D. | 100个吸烟人大约有99个人患有肺癌 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | a<c<b | C. | b<a<c | D. | c<a<b |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| 7816 | 6572 | 0802 | 6314 | 0702 | 4369 | 9728 | 0198 |
| 3204 | 9234 | 4935 | 8200 | 3623 | 4869 | 6938 | 7481 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com