精英家教网 > 高中数学 > 题目详情
9.椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F1,右焦点为F2,离心率$\frac{1}{2}$,过F1的直线交椭圆于A,B两点,且△ABF2的周长为8,椭圆E的方程是$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.

分析 由已知结合椭圆定义可得4a=8,即a=2,再由离心率求得c,结合隐含条件求得b,则椭圆方程可求.

解答 解:由△ABF2的周长为8,可得4a=8,即a=2,又e=$\frac{c}{a}=\frac{1}{2}$,得c=1,
∴b2=a2-c2=3,
∴椭圆E的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
故答案为:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.

点评 本题考查椭圆的简单性质,考查了椭圆的定义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.有五个命题如下:
(1)集合N*中最小元素是1;
(2)若a∈N*,b∈N*,则(a-b)∈N*
(3)空集是任何集合的真子集;
(4)区间[2,4]是函数f(x)=x2-2x+3的一个单调增区间;
(5)若集合A={x|1<x<3},集合B={t|1<t<3},则A≠B;
其中正确的命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,AB⊥AD,AB∥CD,CD=2AB=2AD=2,PB⊥底面ABCD,E是PC上的点.
(1)求证:BD⊥平面PBC;
(2)设PB>1,若E是PC的中点,且直线PD与平面EDB所成角的正弦值为$\frac{{\sqrt{2}}}{3}$,求二面角P-BD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=log2(2x)•log2$\frac{x}{16}$.
(1)解方程f(x)+6=0;
(2)设不等式2${\;}^{{x}^{2}+x}$≤43x-2的解集为M,求函数f(x)(x∈M)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ex+ax,曲线y=f(x)在点(0,f(0))处的切线方程为y=1.
(1)求实数a的值及函数f(x)的单调区间;
(2)若b>0,f(x)≥b(b-1)x+c,求b2c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若数列{an}为等差数列且a1+a7+a13=4π,则sin(a2+a12)的值(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.10D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知i是虚数单位,则i+|-i|在复平面上对应的点是(  )
A.(1,0)B.(0,1)C.(1,1)D.(1,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=(x2-$\frac{1}{2}$x-$\frac{1}{2}$)ex,则方程4e2[f(x)]2+tf(x)-9$\sqrt{e}$=0(t∈R)的根的个数为(  )
A.2B.3C.4D.随t的变化而变化

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)为定义在R上的增函数,若对于任意的x,y∈R,都有f(x+y)=f(x)+f(y).
(1)求f(0),并证明f(x)为R上的奇函数;
(2)若f(1)=2,解关于x的不等式f(x)-f(3-x)<4.

查看答案和解析>>

同步练习册答案