精英家教网 > 高中数学 > 题目详情
10.在研究吸烟与患肺癌的关系中,通过收集数据,整理、分析数据得出“吸烟与患肺癌有关”的结论,并有99%的把握认为这个结论是成立的,下列说法中正确的是(  )
A.吸烟人患肺癌的概率为99%
B.认为“吸烟与患肺癌有关”犯错误的概率不超过1%
C.吸烟的人一定会患肺癌
D.100个吸烟人大约有99个人患有肺癌

分析 “吸烟与患肺癌有关”的结论,并且在犯错误的概率不超过0.01的前提下认为这个结论是成立的,表示有99%的把握认为这个结论成立,与多少个人患肺癌没有关系,得到结论.

解答 解:∵“吸烟与患肺癌有关”的结论,并且在犯错误的概率不超过0.01的前提下认为这个结论是成立的,
表示有99%的把握认为这个结论成立,
与多少个人患肺癌没有关系,
只有B选项正确,
故选:B.

点评 本题考查独立性检验的应用,是一个基础题,解题的关键是正确理解有多大把握认为这件事正确,实际上是对概率的理解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,点A(-1,-2)、B(2,3)、C(-2,-1).
(1)求|$\overrightarrow{AB}+\overrightarrow{AC}}$|;
(2)设实数t满足($\overrightarrow{AB}$-t$\overrightarrow{OC}$)•$\overrightarrow{OC}$=0,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.等比数列{an},Sn是{an}的前n项和.若a1=1,a4=8,则S6=63.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}满足a1=0,an+1=an+2$\sqrt{{a}_{n}+1}$+1
(1)求证数列{$\sqrt{{a}_{n}+1}$}是等差数列,并求出an的通项公式;
(2)若bn=$\frac{{a}_{n}•{2}^{n}}{n-1}$,求数列{b}的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1(-c,0),F2(c,0).若双曲线上存在点P,使PF1=2PF2,则该双曲线的离心率的取值范围是(1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)若α,β为锐角,且cos(α+β)=$\frac{12}{13}$,cos(2α+β)=$\frac{3}{5}$,求cosα的值
(2)求函数f(x)=lg(2cosx-1)+$\sqrt{49-{x}^{2}}$的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如果函数f(x)=ax(ax-3a2-1)(a>0且a≠1)在区间(-∞,0]上是减函数,那么实数a的取值范围是(  )
A.$(0,\frac{{\sqrt{3}}}{3}]$B.$(0,\frac{{\sqrt{3}}}{3}]∪$(1,+∞)C.$[\frac{{\sqrt{3}}}{3},1)$D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.有五个命题如下:
(1)集合N*中最小元素是1;
(2)若a∈N*,b∈N*,则(a-b)∈N*
(3)空集是任何集合的真子集;
(4)区间[2,4]是函数f(x)=x2-2x+3的一个单调增区间;
(5)若集合A={x|1<x<3},集合B={t|1<t<3},则A≠B;
其中正确的命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,AB⊥AD,AB∥CD,CD=2AB=2AD=2,PB⊥底面ABCD,E是PC上的点.
(1)求证:BD⊥平面PBC;
(2)设PB>1,若E是PC的中点,且直线PD与平面EDB所成角的正弦值为$\frac{{\sqrt{2}}}{3}$,求二面角P-BD-E的余弦值.

查看答案和解析>>

同步练习册答案