精英家教网 > 高中数学 > 题目详情
18.已知数列{an}满足a1=0,an+1=an+2$\sqrt{{a}_{n}+1}$+1
(1)求证数列{$\sqrt{{a}_{n}+1}$}是等差数列,并求出an的通项公式;
(2)若bn=$\frac{{a}_{n}•{2}^{n}}{n-1}$,求数列{b}的前n项的和Tn

分析 (1)变形利用等差数列的定义与通项公式即可得出.
(2)利用“错位相减法”与等比数列的求和公式即可得出.

解答 (1)证明:由an+1=an+2$\sqrt{{a}_{n}+1}$+1=$(\sqrt{{a}_{n}+1}+1)^{2}$-1,
∴$\sqrt{{a}_{n+1}+1}$-$\sqrt{{a}_{n}+1}$=1,
故数列{$\sqrt{{a}_{n}+1}$}是等差数列,首项为1,公差为1的等差数列.
∴$\sqrt{{a}_{n}+1}$=1+(n-1)$\sqrt{{a}_{1}+1}$=n,
∴an=n2-1.
(2)解:bn=$\frac{{a}_{n}•{2}^{n}}{n-1}$=(n+1)•2n
∴数列{b}的前n项的和Tn=2×2+3×22+4×23+…+(n+1)•2n
2Tn=2×22+3×23+…+n•2n+(n+1)•2n+1
∴-Tn=4+22+23+…+2n-(n+1)•2n+1=2+$\frac{2({2}^{n}-1)}{2-1}$-(n+1)•2n+1
可得Tn=n•2n+1

点评 本题考查了“错位相减法”与等比数列的求和公式、等差数列的定义与通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=4lnx+ax2+bx(a,b∈R),f′(x)是 f(x)的导函数,且1和4分别是f(x)的两个极值点.
(Ⅰ)求f(x)的单调减区间;
(Ⅱ)若对于?x1∈[1,e],?x2∈[1,e],使得f(x1)+λ[f′(x2)+5]<0成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在扇形AOB中,$\widehat{AB}$的长为π,半径为2,则扇形的内切圆半径为2$\sqrt{2}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,在△ABC中,∠BAC=120°,AB=3,AC=2,D是边BC上一点,DC=2BD,则$\overrightarrow{AD}•\overrightarrow{BC}$=-$\frac{17}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.定义在R上的函数f(x)满足:f(m+n)=f(m)+f(n)-2对任意m、n∈R恒成立.当x>0时,f(x)>2.
(1)求证:f(x)是R上的单调递增函数;
(2)若f(-3)=-7,且不等式f(t2+at-a)≥-7对任意t∈[-2,2]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn,且Sn=2an-2,数列{bn}是首项为1,公差为2的等差数列.
(1)求数列{an}、{bn}的通项公式;
(2)设cn=an+bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在研究吸烟与患肺癌的关系中,通过收集数据,整理、分析数据得出“吸烟与患肺癌有关”的结论,并有99%的把握认为这个结论是成立的,下列说法中正确的是(  )
A.吸烟人患肺癌的概率为99%
B.认为“吸烟与患肺癌有关”犯错误的概率不超过1%
C.吸烟的人一定会患肺癌
D.100个吸烟人大约有99个人患有肺癌

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.cos37°cos23°-sin37°sin23°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知异面直线a,b所成的角为60°,过空间一定点P作直线l,是l与a,b所成的角均为60°,这样的直线l有3条.

查看答案和解析>>

同步练习册答案