精英家教网 > 高中数学 > 题目详情
6.如图,在△ABC中,∠BAC=120°,AB=3,AC=2,D是边BC上一点,DC=2BD,则$\overrightarrow{AD}•\overrightarrow{BC}$=-$\frac{17}{3}$.

分析 根据向量的加减的几何意义和向量的数量积的运算法则计算即可.

解答 解:选定基向量$\overrightarrow{AB}$,$\overrightarrow{AC}$,由图及题意可得$\overrightarrow{BC}$=$\overrightarrow{AC}$-$\overrightarrow{AB}$,$\overrightarrow{AD}$=$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{BC}$=$\frac{1}{3}$$\overrightarrow{AC}$+$\frac{2}{3}\overrightarrow{AB}$,
∴$\overrightarrow{AD}$•$\overrightarrow{BC}$=($\overrightarrow{AC}$-$\overrightarrow{AB}$)($\frac{1}{3}$$\overrightarrow{AC}$+$\frac{2}{3}\overrightarrow{AB}$)=$\frac{1}{3}{\overrightarrow{AC}}^{2}$-$\frac{2}{3}{\overrightarrow{AB}}^{2}$+$\frac{1}{3}$$\overrightarrow{AC}$•$\overrightarrow{AB}$=$\frac{1}{3}$×4-$\frac{2}{3}$×9+$\frac{1}{3}$×3×2×(-$\frac{1}{2}$)=-$\frac{17}{3}$
故答案为:$-\frac{17}{3}$

点评 本题主要考查向量数量积的应用,关键是掌握向量的加减的几何意义,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.学期结束年级有15个三好学生名额分配给高二(1)(2)(3)(4)四个班,并且保证每个班至少2个名额,则不同的分配的方法有120种(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$\overrightarrow{a}$,$\overrightarrow{b}$是夹角为120°的单位向量,当向量λ$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-2$\overrightarrow{b}$垂直时,λ的值为(  )
A.$\frac{5}{4}$B.-$\frac{5}{4}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在某次试验中,有两个试验数据x,y,统计的结果如下面的表格.
x12345
y23445
(I) 在给出的坐标系中画出x,y的散点图;
(II)然后根据表格的内容和公式求出y对x的回归直线方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,并估计当x为10时y的值是多少?
$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.等比数列{an},Sn是{an}的前n项和.若a1=1,a4=8,则S6=63.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,则$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}满足a1=0,an+1=an+2$\sqrt{{a}_{n}+1}$+1
(1)求证数列{$\sqrt{{a}_{n}+1}$}是等差数列,并求出an的通项公式;
(2)若bn=$\frac{{a}_{n}•{2}^{n}}{n-1}$,求数列{b}的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)若α,β为锐角,且cos(α+β)=$\frac{12}{13}$,cos(2α+β)=$\frac{3}{5}$,求cosα的值
(2)求函数f(x)=lg(2cosx-1)+$\sqrt{49-{x}^{2}}$的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{1}{x+1}$.
(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论;
(2)求该函数在区间[1,4]上的最大值与最小值.

查看答案和解析>>

同步练习册答案