精英家教网 > 高中数学 > 题目详情
17.已知$\overrightarrow{a}$,$\overrightarrow{b}$是夹角为120°的单位向量,当向量λ$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-2$\overrightarrow{b}$垂直时,λ的值为(  )
A.$\frac{5}{4}$B.-$\frac{5}{4}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

分析 根据平面向量的数量积与模长公式,即可求出λ的值.

解答 解:$\overrightarrow{a}$,$\overrightarrow{b}$是夹角为120°的单位向量,
∴|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,$\overrightarrow{a}$•$\overrightarrow{b}$=1×1×cos120°=-$\frac{1}{2}$,
∵向量λ$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-2$\overrightarrow{b}$垂直,
∴(λ$\overrightarrow{a}$+$\overrightarrow{b}$)($\overrightarrow{a}$-2$\overrightarrow{b}$)=0,
即λ${\overrightarrow{a}}^{2}$-2λ$\overrightarrow{a}$•$\overrightarrow{b}$+$\overrightarrow{a}$•$\overrightarrow{b}$-2${\overrightarrow{b}}^{2}$=0,
即λ-2λ×(-$\frac{1}{2}$)-$\frac{1}{2}$-2=0,
解得λ=$\frac{5}{4}$.
故选:A.

点评 本题考查了平面向量的数量积与模长公式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.函数y=log2(2cosx-$\sqrt{3}$)的定义域为(  )
A.[-$\frac{π}{6}$,$\frac{π}{6}$]B.[2kπ-$\frac{π}{6}$,2kπ+$\frac{π}{6}$](k∈Z)
C.[2kπ-30°,2kπ+30°](k∈Z)D.(2kπ-$\frac{π}{6}$,2kπ+$\frac{π}{6}$)((k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=4lnx+ax2+bx(a,b∈R),f′(x)是 f(x)的导函数,且1和4分别是f(x)的两个极值点.
(Ⅰ)求f(x)的单调减区间;
(Ⅱ)若对于?x1∈[1,e],?x2∈[1,e],使得f(x1)+λ[f′(x2)+5]<0成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.集合B={3,7,5,9},集合C={0,5,9,4,7},则B∪C为(  )
A.{7,9}B.{0,3,7,9,4,5}C.{5,7,9}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.关于函数f(x)=sinx(sinx-cosx)的有关性质,下列叙述正确的是(  )
A.f(x)的最小正周期为2πB.f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]内单调递增
C.f(x)的图象关于(-$\frac{π}{2}$,0)对称D.f(x)的图象关于x=$\frac{π}{8}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.不等式$\frac{3}{x+1}$≤1的解集是(-∞,-1)∪[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在扇形AOB中,$\widehat{AB}$的长为π,半径为2,则扇形的内切圆半径为2$\sqrt{2}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,在△ABC中,∠BAC=120°,AB=3,AC=2,D是边BC上一点,DC=2BD,则$\overrightarrow{AD}•\overrightarrow{BC}$=-$\frac{17}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.cos37°cos23°-sin37°sin23°=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案