| A. | $\frac{5}{4}$ | B. | -$\frac{5}{4}$ | C. | $\frac{4}{5}$ | D. | -$\frac{4}{5}$ |
分析 根据平面向量的数量积与模长公式,即可求出λ的值.
解答 解:$\overrightarrow{a}$,$\overrightarrow{b}$是夹角为120°的单位向量,
∴|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,$\overrightarrow{a}$•$\overrightarrow{b}$=1×1×cos120°=-$\frac{1}{2}$,
∵向量λ$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-2$\overrightarrow{b}$垂直,
∴(λ$\overrightarrow{a}$+$\overrightarrow{b}$)($\overrightarrow{a}$-2$\overrightarrow{b}$)=0,
即λ${\overrightarrow{a}}^{2}$-2λ$\overrightarrow{a}$•$\overrightarrow{b}$+$\overrightarrow{a}$•$\overrightarrow{b}$-2${\overrightarrow{b}}^{2}$=0,
即λ-2λ×(-$\frac{1}{2}$)-$\frac{1}{2}$-2=0,
解得λ=$\frac{5}{4}$.
故选:A.
点评 本题考查了平面向量的数量积与模长公式的应用问题,是基础题目.
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{π}{6}$,$\frac{π}{6}$] | B. | [2kπ-$\frac{π}{6}$,2kπ+$\frac{π}{6}$](k∈Z) | ||
| C. | [2kπ-30°,2kπ+30°](k∈Z) | D. | (2kπ-$\frac{π}{6}$,2kπ+$\frac{π}{6}$)((k∈Z) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {7,9} | B. | {0,3,7,9,4,5} | C. | {5,7,9} | D. | ∅ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)的最小正周期为2π | B. | f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]内单调递增 | ||
| C. | f(x)的图象关于(-$\frac{π}{2}$,0)对称 | D. | f(x)的图象关于x=$\frac{π}{8}$对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com