ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©ÊǺ¯Êýf£¨x£©=1+log2
x
1-x
µÄͼÏóÉÏÈÎÒâÁ½µã£¬ÇÒ
OM
=
1
2
£¨
OA
+
OB
£©£¬ÒÑÖªµãMµÄºá×ø±êΪ
1
2
£®
£¨1£©ÇóÖ¤£ºMµãµÄ×Ý×ø±êΪ¶¨Öµ£»
£¨2£©ÈôSn=f£¨
1
n
£©+f£¨
2
n
£©+¡­+f£¨
n-1
n
£©£¬n¡ÊN*£¬ÇÒn¡Ý2£¬ÇóSn£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÒÑÖªan=
1
2
                             n=1
1
(Sn+1)(Sn+1+1)
   n¡Ý2ÇÒn¡ÊN*
£¬TnΪÊýÁÐ{an}µÄǰnÏîºÍ£¬ÈôTn£¼¦Ë¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬ÊÔÇó¦ËµÄȡֵ·¶Î§£®
¿¼µã£ºÊýÁÐÓ뺯ÊýµÄ×ÛºÏ,ÊýÁеÄÇóºÍ
רÌ⣺×ÛºÏÌâ,µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨1£©È·¶¨MÊÇA£¬BµÄÖе㣬ÀûÓõãMµÄºá×ø±êΪ
1
2
£¬¼´¿ÉÖ¤Ã÷MµãµÄ×Ý×ø±êΪ¶¨Öµ£»
£¨2£©ÓÉ£¨1£©Öª£¬x1+x2=1£¬y1+y2=1£¬ÀûÓõ¹ÐòÏà¼Ó·¨£¬¿ÉÇóSn£»
£¨3£©ÀûÓÃÁÑÏî·¨ÇóºÍ£¬¼´¿ÉÇó¦ËµÄȡֵ·¶Î§£®
½â´ð£º £¨1£©Ö¤Ã÷£º¡ß
OM
=
1
2
£¨
OA
+
OB
£©£¬
¡àMÊÇA£¬BµÄÖе㣬
¡ßµãMµÄºá×ø±êΪ
1
2
£¬
¡àx1+x2=1£¬
¡ày1+y2=1+log2
x1
1-x1
+1+log2
x2
1-x2
=1£¬
¡à¡àMµãµÄ×Ý×ø±êΪ¶¨Öµ
1
2
£»
£¨2£©½â£ºÓÉ£¨1£©Öª£¬x1+x2=1£¬y1+y2=1£¬
¡ßSn=f£¨
1
n
£©+f£¨
2
n
£©+¡­+f£¨
n-1
n
£©£¬
¡àSn=f£¨
n-1
n
£©+¡­+f£¨
1
n
£©£¬
ÒÔÉÏÁ½Ê½Ïà¼ÓµÃ£º2Sn=n-1£¬
¡àSn=
n-1
2
£»
£¨3£©½â£ºµ±n¡Ý2ʱ£¬an=4£¨
1
n+1
-
1
n+2
£©£¬
¡àTn=
2
3
+4£¨+
1
3
-
1
4
+¡­+
1
n+1
-
1
n+2
£©=
2n
n+2
£¬
¡àTn¡Ý2£¬
¡ßTn£¼¦Ë¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬
¡à¦Ë£¾2£®
µãÆÀ£º±¾Ì⿼²éÊýÁÐÓ뺯ÊýµÄ×ۺϣ¬¿¼²éÊýÁеÄͨÏîÓëÇóºÍ£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¡÷ABCÊDZ߳¤Îª2µÄµÈ±ßÈý½ÇÐΣ¬ÔÚÆ½ÃæABCËùÔÚÆ½ÃæÉÏÓÐÒ»µãP£¬MÊÇAPµÄÖе㣬Âú×㣨
AC
-
AM
£©•£¨
AB
-
AP
£©=0£¬Ôò|
BM
|µÄ×îСֵΪ£¨¡¡¡¡£©
A¡¢
7
-
3
2
B¡¢
3
-1
2
C¡¢
3
2
D¡¢
7
2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}µÄÊ×Ïîa1=2£¬Ç°nÏîºÍΪSn£¬ÇÒ-a2£¬Sn£¬2an+1³ÉµÈ²îÊýÁУ¬ÇóÊýÁÐ{an}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¼¯ºÏA={x|ax£¾1£¨a¡Ù0£©}£¬B={x|x2-1£¾0}£¬ÈôA⊆B£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèµãF£¨1£¬0£©£¬¶¯Ô²P¾­¹ýµãFÇÒºÍÖ±Ïßx=-1ÏàÇУ®¼Ç¶¯Ô²µÄÔ²ÐÄPµÄ¹ì¼£ÎªÇúÏßW£®
£¨¢ñ£©ÇóÇúÏßWµÄ·½³Ì£»
£¨¢ò£©¹ýµãM£¨0£¬2£©µÄÖ±ÏßlÓëÇúÏßW½»ÓÚA¡¢BÁ½µã£¬ÇÒÖ±ÏßlÓëxÖá½»ÓÚµãC£¬Éè
MA
=¦Á
AC
£¬
MB
=¦Â
BC
£¬ÇóÖ¤£º¦Á+¦ÂΪ¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èôº¯Êýf£¨x£©=
|x|
x+2
-ax2£¬ÆäÖÐa¡ÊR£¬
£¨1£©µ±a=2ʱ£¬Çóº¯Êýf£¨x£©µÄÁãµã£»
£¨2£©µ±a£¾0ʱ£¬ÇóÖ¤£ºº¯Êýf£¨x£©ÔÚ£¨0£¬+¡Þ£©ÄÚÓÐÇÒ½öÓÐÒ»¸öÁãµã£»
£¨3£©Èôº¯Êýf£¨x£©ÓÐËĸö²»Í¬µÄÁãµã£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªO£¬A£¬BÈýµã²»¹²Ïߣ¬ÇÒ
OP
=m
OA
+n
OB
£¬£¨m£¬n¡ÊR£©£®
£¨1£©Èôm+n=1£¬ÇóÖ¤£ºA£¬P£¬BÈýµã¹²Ïߣ»
£¨2£©ÈôA£¬P£¬BÈýµã¹²Ïߣ¬ÇóÖ¤£ºm+n=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=-
1
3
x3+x2+3x+a£®
£¨1£©Çóf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©Èôf£¨x£©ÔÚÇø¼ä[-3£¬3]ÉϵÄ×îСֵΪ
7
3
£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªABÊÇÍÖÔ²
x2
a2
+
y2
b2
=1µÄ²»Æ½ÐÐÓÚ¶Ô³ÆÖáµÄÏÒ£¬M£¨x0£¬y0£©ÎªABµÄÖе㣬ÇóÖ±ÏßABµÄбÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸