精英家教网 > 高中数学 > 题目详情
11.复数z=$\frac{(i-1)^{2}+2}{i+1}$的实部为(  )
A.-2B.-1C.1、D.0

分析 直接利用复数代数形式的乘除运算化简得答案.

解答 解:∵z=$\frac{(i-1)^{2}+2}{i+1}$=$\frac{2-2i}{i+1}=\frac{2(1-i)^{2}}{(1+i)(1-i)}=-2i$,
∴复数z=$\frac{(i-1)^{2}+2}{i+1}$的实部为0.
故选:D.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知复数$\frac{2+i}{a-i}$(其中a∈R,i为虚数单位)是纯虚数,则a+i的模为(  )
A.$\frac{5}{2}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{\sqrt{5}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,a,b,c分别为三个内角A,B,C的对边,若a=2,b=1,B=29°,则此三角形解的情况是(  )
A.无解B.有一解C.有两解D.有无数解

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)=ex(sinx-cosx)(0≤x≤2016π),则函数f(x)的各极大值之和为(  )
A.$\frac{{{e^π}(1-{e^{2017π}})}}{{1-{e^{2π}}}}$B.$\frac{{{e^π}(1-{e^{1009π}})}}{{1-{e^π}}}$
C.$\frac{{{e^π}(1-{e^{1008π}})}}{{1-{e^{2π}}}}$D.$\frac{{{e^π}(1-{e^{2016π}})}}{{1-{e^{2π}}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,已知圆M:(x+1)2+y2=$\frac{49}{4}$的圆心为M,圆N:(x-1)2+y2=$\frac{1}{4}$的圆心为N,一动圆与圆M内切,与圆N外切.
(Ⅰ)求动圆圆心P的轨迹方程;
(Ⅱ)过点(1,0)的直线l与曲线P交于A,B两点,若$\overrightarrow{OA}•\overrightarrow{OB}$=-2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)和g(x)分别是R上的奇函数和偶函数,则函数h(x)=g(x)|f(x)|的图象((  )
A.关于原点对称B.关于x轴对称C.关于y轴对称D.关于直线y=x对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知α,β∈(0,π),且tan(α-β)=$\frac{1}{2}$,tanβ=-$\frac{1}{7}$,则2α-β的值是(  )
A.-$\frac{π}{4}$B.-$\frac{3π}{4}$C.$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知实数x满足9x-12•3x+27≤0,函数$f(x)={log_2}\frac{x}{2}•{log_{\sqrt{2}}}\frac{{\sqrt{x}}}{2}$.
(1)求实数x的取值范围;
(2)求函数f(x)的最大值和最小值,并求出此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数$f(x)=|{\frac{e^x}{2}-\frac{a}{e^x}}|({a∈R})$在区间[1,2]上单调递增,则实数a的取值范围是[-$\frac{{e}^{2}}{2}$,$\frac{{e}^{2}}{2}$].

查看答案和解析>>

同步练习册答案