分析 去掉绝对值,根据f′(x)≥0,得到a的范围即可.
解答 解:f(x)=$|\frac{{e}^{2x}-2a}{{2e}^{x}}|$;
∵x∈[1,2];
∴a≤$\frac{{e}^{2}}{2}$时,f(x)=$\frac{{e}^{2x}-2a}{{2e}^{x}}$,f′(x)=$\frac{{e}^{2x}+2a}{{2e}^{x}}$;
由f′(x)≥0;解得:a≥-$\frac{{e}^{2x}}{2}$≥-$\frac{{e}^{2}}{2}$,
即-$\frac{{e}^{2}}{2}$≤a≤$\frac{{e}^{2}}{2}$时,f′(x)≥0,f(x)在[1,2]上单调递增;
即a的取值范围是:[-$\frac{{e}^{2}}{2}$,$\frac{{e}^{2}}{2}$].
故答案为:[-$\frac{{e}^{2}}{2}$,$\frac{{e}^{2}}{2}$].
点评 考查对含绝对值函数的处理方法:去绝对值,根据函数导数符号判断函数单调性的方法,以及指数函数的单调性.
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{4}{5}$ | B. | $\frac{1}{2}$ | C. | $\frac{8}{5}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若l⊥α.m⊥α,则l∥m | |
| B. | 若m?β,m⊥l,n是l在β内的射影,则m⊥n | |
| C. | 若m?α,n?α,m∥n,则n∥α | |
| D. | 若α⊥γ,β⊥γ,则α∥β. |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$|AB1| | |
| B. | $\sqrt{{\overrightarrow{A{B}_{1}}}^{2}+{\overrightarrow{C{A}_{1}}}^{2}-(\overrightarrow{A{B}_{1}}•\overrightarrow{C{A}_{1}})^{2}}$ | |
| C. | $\frac{1}{4}$|AB1|•|CA1|•sinθ | |
| D. | $\frac{1}{12}$•V${\;}_{{\;}_{ABC-{A}_{1}{B}_{1}{C}_{1}}}$(V${\;}_{ABC-{A}_{1}{B}_{1}{C}_{1}}$是三棱柱ABC-A1B1C1的体积) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com