精英家教网 > 高中数学 > 题目详情
15.如图,在三棱柱ABC-A1B1C1中,已知E,F分别是线段AB1与CA1上的动点,异面直线AB1与CA1所成角为θ,记线段EF中点M的轨边为L,则|L|等于(  )
A.$\frac{1}{2}$|AB1|
B.$\sqrt{{\overrightarrow{A{B}_{1}}}^{2}+{\overrightarrow{C{A}_{1}}}^{2}-(\overrightarrow{A{B}_{1}}•\overrightarrow{C{A}_{1}})^{2}}$
C.$\frac{1}{4}$|AB1|•|CA1|•sinθ
D.$\frac{1}{12}$•V${\;}_{{\;}_{ABC-{A}_{1}{B}_{1}{C}_{1}}}$(V${\;}_{ABC-{A}_{1}{B}_{1}{C}_{1}}$是三棱柱ABC-A1B1C1的体积)

分析 由题意画出图形,取特殊点得到M的轨迹为平行四边形区域,再由三角形面积求解.

解答 解:当E位于B1,A,而F在A1C上移动时,M的轨迹为平行于A1C的两条线段,
当F位于A1,C,而E在AB1上移动时,M的轨迹为平行与AB1的两条线段.
其它情况下,M的轨迹构成图中平行四边形内部区域.

∴|L|=2×$\frac{1}{2}$|$\frac{1}{2}$AB1|•|$\frac{1}{2}$CA1|•sinθ=$\frac{1}{4}$|AB1|•|CA1|•sinθ.
故选:C.

点评 本题考查棱柱的结构特征,考查空间想象能力和思维能力,利用特殊点得到M的轨迹是解答该题的关键,是压轴题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.若函数$f(x)=|{\frac{e^x}{2}-\frac{a}{e^x}}|({a∈R})$在区间[1,2]上单调递增,则实数a的取值范围是[-$\frac{{e}^{2}}{2}$,$\frac{{e}^{2}}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,四棱锥P-ABCD,底面ABCD为矩形,AB=PA=$\sqrt{3}$,AD=2,PB=$\sqrt{6}$,E为PB中点,且AE⊥BC.
(1)求证:PA⊥平面ABCD;
(2)若M,N分别为棱PC,PD中点,求四棱锥B-MCDN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某种汽车购车时的费用为10万元,每年保险、养路费、汽油费共1.5万元,如果汽车的维修费第1年0.1万元,从第2年起,每年比上一年多0.2万元,这种汽车最多使用10年报废最合算(即平均每年费用最少).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.“a=3”是“直线ax-2y-1=0与直线6x-4y+1=0平行”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数$f(x)=\left\{\begin{array}{l}{2^{1-x}}\;,x≤1\\ 1-{log_2}x\;,x>1\end{array}\right.$,则f[f(-1)]=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=Asin(2x+φ)-$\frac{1}{2}$(A>0,0<φ<$\frac{π}{2}$)的图象在y轴上的截距为1,且关于直线x=$\frac{π}{12}$对称,若对于任意的x∈[0,$\frac{π}{2}$],都有m2-3m≤f(x),则实数m的取值范围为(  )
A.[1,$\frac{3}{2}$]B.[1,2]C.[$\frac{3}{2}$,2]D.[$\frac{3-\sqrt{3}}{2}$,$\frac{3+\sqrt{3}}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.矩形ABCD中,AB=3,AD=2,P矩形内部一点,且AP=1,若$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$,则3x+2y的取值范围是(1,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f ( x)=2ax-a+3,若?x0∈(-1,1),f ( x0 )=0,则实数 a 的取值范围是(  )
A.(-∞,-3)∪(1,+∞)B.(-∞,-3)C.(-3,1)D.(1,+∞)

查看答案和解析>>

同步练习册答案