精英家教网 > 高中数学 > 题目详情
已知直线x-2y-a=0与圆:x2+y2+2x-4y=0相切,则a=(  )
A、0B、-10或0
C、-3或0D、--10
考点:圆的切线方程
专题:直线与圆
分析:根据直线和圆相切的条件即可得到结论.
解答: 解:圆的标准方程为(x+1)2+(y-2)2=5,圆心为C(-1,2),半径R=
5

若直线x-2y-a=0与圆:x2+y2+2x-4y=0相切,
则圆心到直线的距离d=
|-1-4-a|
1+22
=
|a+5|
5
=
5

即|a+5|=5,
即a+5=5或a+5=-5,
解得a=0或a=-10,
故选:B
点评:本题主要考查直线和圆的位置关系的应用,根据直线和圆相切的等价条件是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在10支铅笔中,有8支正品和2支次品,现从中任取1支,则取得次品的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

函数g(x)=log2x,关于方程|g(x)|2+m|g(x)|+2m+3=0在(0,2)内有三个不同的实数解,则实数m的取值范围是(  )
A、(-∞,4-2
7
)∪(4+2
7
,+∞)
B、(4-2
7
,4+2
7
C、(-
3
4
,-
2
3
D、(-
3
2
,-
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=4和点M(1,a),
(1)若过点M有且只有一条直线与圆O相切,求实数a的值,并求出切线方程;
(2)若a=2,圆O上有一动点N(x0,y0),设线段MN上一点P满足MP=2PN,求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P:m2-10m+16≤0,Q:函数f(x)=x3+mx2+(m+6)x+1存在极大值和极小值,求使“P∩?Q”为真命题的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

经研究发现,学生的注意力随着老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增;中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散.设f(t)表示学生注意力随时间t(分钟)的变化规律(f(t)越大,表明学生注意力越集中),经过实验分析得知:f(t)=
-t2+26t+80 ,  0<t≤10
240 ,          10≤t≤20
kt+400 ,         20≤t≤40

(1)求出k的值,并指出讲课开始后多少分钟,学生的注意力最集中?能坚持多久?
(2)一道数学难题,需要讲解24分钟,并且要求学生的注意力至少达到185,那么经过适当安排,老师能否在学生达到所需的状态下讲授完这道题目?

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=x2+bx+4,(b∈R)与x轴有交点,若对一切非零实数x,都有f(x+
1
x
)≥0.
(1)求实数b的取值集合;
(2)若b=-4,设函数g(x)=f(x)+
a
f(x)
,x∈[3,2+
2
],求h(a)=g(x)max-g(x)min的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)在x0点的某个邻域内有定义,则f(x)在x0处连续的充分必要条件是(  )
A、
lim
x-x0
f(x)存在
B、
lim
x→x0-
f(x)=
lim
x→x0+
f(x)
C、
lim
x-x0
f(x)=0
D、在x0的某个邻域内,f(x)=f(x0)+α(x),其中
lim
x-x0
α(x)=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中,a2=2,a4=8,若abn=3n-1,则b2015=
 

查看答案和解析>>

同步练习册答案