精英家教网 > 高中数学 > 题目详情
若椭圆与双曲线均为正数)有共同的焦点F1F2P是两曲线的一个公共点,则等于           (   )
A.B.C.D.
C

分析:设|PF1|>|PF2|,根据椭圆和双曲线的定义可分别表示出|PF1|+|PF2|和|PF1|-|PF2|,进而可表示出|PF1|和|PF2|,根据焦点相同可求得m-n=p+q,整理可得m-p=n+q,进而可求得|pF1|?|pF2|的表达式.
解:由椭圆和双曲线定义
不妨设|PF1|>|PF2|
则|PF1|+|PF2|=2
|PF1|-|PF2|=2
所以|PF1|=+
|PF2|=-
∴|pF1|?|pF2|=m-p
∵焦点相同
c2=m-n=p+q
∴m-p=n+q
所以|pF1|?|pF2|=m-p或n+q
故选C
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知抛物线
(1)设是C1的任意两条互相垂直的切线,并设,证明:点M的纵坐标为定值;
(2)在C1上是否存在点P,使得C1在点P处切线与C2相交于两点A、B,且AB的中垂线恰为C1的切线?若存在,求出点P的坐标;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
抛物线D以双曲线的焦点为焦点.
(1)求抛物线D的标准方程;
(2)过直线上的动点P作抛物线D的两条切线,切点为AB.求证:直线AB过定点Q,并求出Q的坐标;
(3)在(2)的条件下,若直线PQ交抛物线DMN两点,求证:|PM|·|QN|=|QM|·|PN|

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

把曲线按向量平移后得到曲线,曲线有一条准线方程为,则的值为____________,离心率为_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的焦点到双曲线的渐近线的距离为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知分别是圆锥曲线的离心率,设
,则的取值范围是
A.(,0)B.(0,C.(,1)D.(1,

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为A(-1,0),B(1,0),平面
内两点G,M同时满足下列条件①=0;②||=||=||;③.(Ⅰ)求△ABC的顶点C的轨迹方程;(Ⅱ)是否存在过点P(3,0)的直线l与(Ⅰ)中轨迹交于E、F两点,且OE⊥OF?若存在,求出直线l斜率k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线G的中心在原点,它的渐近线与圆相切,过点P(-4,0)作斜率为的直线l,使得lG交于A、B两点,和y轴交于点C,并且点P在线段AB上,又满足
(1)求双曲线G的渐近线方程
(2)求双曲线G的方程
(3)椭圆S的中心在原点,它的短轴是G的实轴,如果S中垂直于l的平行弦的中点轨迹恰好是G的渐近线截在S内的部分,求椭圆S的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线与双曲线有相同的焦点,点 是两曲线的一个交点,且轴,若为双曲线的一条渐近线,则的倾斜角所在的区间可能是( )
A.B.C.D.

查看答案和解析>>

同步练习册答案