精英家教网 > 高中数学 > 题目详情
已知双曲线G的中心在原点,它的渐近线与圆相切,过点P(-4,0)作斜率为的直线l,使得lG交于A、B两点,和y轴交于点C,并且点P在线段AB上,又满足
(1)求双曲线G的渐近线方程
(2)求双曲线G的方程
(3)椭圆S的中心在原点,它的短轴是G的实轴,如果S中垂直于l的平行弦的中点轨迹恰好是G的渐近线截在S内的部分,求椭圆S的方程。
(1)(2)(3)
(1)设双曲线G的渐近线方程为y=kx,则由渐近线与圆相切可得,所以,故渐近线方程为
(2)由(1)可设双曲线G的方程为,把直线l的方程代入双曲线并整理得    (1)
,P、A、B、C共线且在线段AB上
整理得
将(1)式带入得m=8故双曲线G的方程为
(3)由提议可设椭圆方程为设弦的端点分别为,MN的中点为,则作差得故垂直于l的平行弦中点的轨迹为直线截在内的部分。又由题意,这个轨迹恰好是的渐近线截在内的部分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知曲线;(1)由曲线C上任一点E向X轴作垂线,垂足为F,。问:点P的轨迹可能是圆吗?请说明理由;(2)如果直线L的斜率为,且过点,直线L交曲线C于A,B两点,又,求曲线C的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆与双曲线均为正数)有共同的焦点F1F2P是两曲线的一个公共点,则等于           (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点,直线为平面上的动点,过点作直线的垂线,垂足为,且
(1)求动点的轨迹的方程;
(2)已知圆过定点,圆心在轨迹上运动,且圆轴交于两点,设,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知双曲线,焦点F2到渐近线的距离为,两条准线之间的距离为1。  (I)求此双曲线的方程;  (II)过双曲线焦点F1的直线与双曲线的两支分别相交于A、B两点,过焦点F2且与AB平行的直线与双曲线分别相交于C、D两点,若A、B、C、D这四点依次构成平行四边形ABCD,且,求直线AB的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设圆过点P(0,2), 且在轴上截得的弦RG的长为4.
(1)求圆心的轨迹E的方程;                                                                                                        
(2)过点(0,1),作轨迹的两条互相垂直的弦,设 的中点分别为,试判断直线是否过定点?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标平面中,的两个顶点分别的坐标为,平面内两点同时满足下列条件:
;②;③
(1)求的顶点的轨迹方程;
(2)过点的直线与(1)中轨迹交于两点,求的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知两点M(-2,0)、N(2,0),点P为坐标平面内的动点,满足||||+ ·=0,求动点P(x,y)的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线与双曲线没有公共点,则实数的取值范围是(      )
A.B.C.D.

查看答案和解析>>

同步练习册答案