精英家教网 > 高中数学 > 题目详情
4.已知a,b,c分别为△ABC的三边长,且$|\begin{array}{l}{a}&{b}&{c}\\{c}&{a}&{b}\\{b}&{c}&{a}\end{array}|$=0,求证:△ABC是等边三角形.

分析 将三阶行列式展开,求得a3+b3+c3-3abc=0,将a3+b3+c3-3abc分解因式为(a+b+c)(a2+b2+c2-ab-bc-ca),然后根据a、b、c为正数,可得出a2+b2+c2-ab-bc-ca=0,配方后根据完全平方的非负性即可得出a=b=c,即可证明△ABC是等边三角形.

解答 解:证明:由$|\begin{array}{l}{a}&{b}&{c}\\{c}&{a}&{b}\\{b}&{c}&{a}\end{array}|$=a3+b3+c3-3abc=0
(a+b)3-3ab(a+b)+c3-3abc
=[(a+b)3+c3]-3ab(a+b+c)
=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)
=(a+b+c)(a2+b2+c2-ab-bc-ca),
∵a,b,c为正数,
∴a+b+c>0,
a2+b2+c2-ab-ac-bc=0,
2a2+2b2+2c2-2ab-2ac-2bc=0,
∴(a-b)2+(a-c)2+(b-c)2=0,
∵(a-b)2≥0,(a-c)2≥0,(b-c)2≥0,
∴只有(a-b)2=0,(a-c)2=0,(b-c)2=0,
∴a=b=c,
∴△ABC是等边三角形.

点评 本题考查行列式的展开,考查因式分解及三角形性质判断及行列式的性质的综合应用,考查分析问题及解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.平面直角坐标系中,点P、Q是方程$\sqrt{{x^2}+2\sqrt{7}x+{y^2}+7}+\sqrt{{x^2}-2\sqrt{7}x+{y^2}+7}$=8表示的曲线C上不同两点,且以PQ为直径的圆过坐标原点O,则O到直线PQ的距离为(  )
A.2B.$\frac{6}{5}$C.3D.$\frac{12}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=lg(x2+2x+a2)的值域为R,则实数a的取值范围是[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若a∈{4,5,6}且a∈{6,7},则a的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(x)=$\frac{sin(2π-x)•cos(\frac{3}{2}π+x)}{cos(3π-x)•sin(\frac{11}{2}π-x)}$,则f(-$\frac{21π}{4}$)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,平面α∥平面β,过点P的两条斜线分别交平面α、β于A、C及B、D.点P在平面α内的射影0点在线段AB上,且PA=8,AB=5,PB=7,CD=20.求:
(1)斜线PC与平面β所成角的大小:
(2)平面α与平面β间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,半圆C的参数方程为$\left\{{\begin{array}{l}{x=1+cosφ}\\{y=sinφ}\end{array}}\right.$(φ为参数,0≤φ≤π),以O为极点,x轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求C的极坐标方程;
(Ⅱ)直线l的极坐标方程是$ρ(sinθ+\sqrt{3}cosθ)=5\sqrt{3}$,射线OM:θ=$\frac{π}{3}$与半圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=-1-\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t为参数),以点O为极点,x轴正半轴为极轴的极坐标系中,圆锥曲线C的极坐标方程为ρ2=$\frac{12}{3+si{n}^{2}θ}$
(1)求圆锥曲线C的直角坐标方程与直线l的普通方程;
(2)若直线l交圆锥曲线C于M,N两点,求|MN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设直线l:y=kx+$\sqrt{3}$(k>0)交圆O:x2+y2=1于A,B两点,当△OAB面积最大时,k=(  )
A.$\sqrt{5}$B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

同步练习册答案