精英家教网 > 高中数学 > 题目详情
11.已知a,b为互不相等的正数,试比较ab(a+b)+bc(b+c)+ac(a+c)与6abc的大小ab(a+b)+bc(b+c)+ac(a+c)>6abc.

分析 a,b为互不相等的正数,利用基本不等式的性质可得:a2b+bc2>2abc,ab2+ac2>2abc,b2c+a2c>2abc,即可得出.

解答 解:∵a,b为互不相等的正数,
∴a2b+bc2>2abc,
ab2+ac2>2abc,
b2c+a2c>2abc,
∴a2b+bc2+ab2+ac2+b2c+a2c>6abc,
∴ab(a+b)+bc(b+c)+ac(a+c)-6abc>0,
故答案为:ab(a+b)+bc(b+c)+ac(a+c)-6abc>0.

点评 本题考查了基本不等式的解法、作差法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=sinxcosx+$\sqrt{3}{cos^2}$x
(1)若0≤x≤$\frac{π}{2}$,求函数f(x)的值域;
(2)设△ABC的三个内角A,B,C所对的边分别为a,b,c,若A为锐角且f(A)=$\frac{{\sqrt{3}}}{2}$,b=2,c=3,求cos(A-B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图所示,双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,M,N为双曲线C上两点,且kMN=0,若$\overrightarrow{{F}_{1}Q}$=$\overrightarrow{QN}$(Q在双曲线C上),且|MN|=$\frac{{|F}_{1}{F}_{2}|}{4}$,则双曲线C的渐近线方程为(  )
A.y=$±\sqrt{2}$xB.y=$±\sqrt{3}$xC.y=±2xD.y=$±\sqrt{5}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.满足{1,2,3}⊆M?{1,2,3,4,5}的集合M有3个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在x上的截距为-3,且和直线2x+y一1=0平行的直线方程为2x+y+6=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.过直线x+y=2与x-y=0的交点,且法向量为$\overrightarrow{n}$=(2,-3)的直线方程是(  )
A.-3x+2y+1=0B.3x-2y+1=0C.-2x+3y+1=0D.2x-3y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.过已知点A(1,3)的直线l与x轴、y轴分别交于P、Q两点,求使|AP|•|AQ|最小的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=b•ax(其中a,b为常数,且a>0,a≠1)的图象经过点A(1,6),B(3,24)
(1)求f(x)的表达式;
(2)若不等式ax+bx-m(ab)x≥0在x∈(-∞,1]时恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设数列{an}的前n项和为Sn,且2Sn=3an-1(n∈N*).
(1)求a1,a2及数列{an]的通项公式;
(2)已知数列{bn}满足bn=log3a2n,求{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案