精英家教网 > 高中数学 > 题目详情
3.已知椭圆$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1,求以点P(-2,1)为中点的弦所在的直线方程.

分析 设以点P(-2,1)为中点的弦所在的直线与椭圆相交于点A(x1,y1),B(x2,y2).可得$\frac{{x}_{1}+{x}_{2}}{2}$=-2,$\frac{{y}_{1}+{y}_{2}}{2}$=1,$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=k,则$\frac{{x}_{1}^{2}}{8}+\frac{{y}_{1}^{2}}{4}=1$,$\frac{{x}_{2}^{2}}{8}+\frac{{y}_{2}^{2}}{4}=1$,两式相减可得:$\frac{({x}_{1}+{x}_{2})({x}_{1}-{x}_{2})}{8}$+$\frac{({y}_{1}+{y}_{2})({y}_{1}-{y}_{2})}{4}$=0,代入化简即可得出.当经过点P的直线的斜率不存在时不满足题意.

解答 解:设以点P(-2,1)为中点的弦所在的直线与椭圆相交于点A(x1,y1),B(x2,y2).
∴$\frac{{x}_{1}+{x}_{2}}{2}$=-2,$\frac{{y}_{1}+{y}_{2}}{2}$=1,$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=k,
则$\frac{{x}_{1}^{2}}{8}+\frac{{y}_{1}^{2}}{4}=1$,$\frac{{x}_{2}^{2}}{8}+\frac{{y}_{2}^{2}}{4}=1$,
两式相减可得:$\frac{({x}_{1}+{x}_{2})({x}_{1}-{x}_{2})}{8}$+$\frac{({y}_{1}+{y}_{2})({y}_{1}-{y}_{2})}{4}$=0,
∴$\frac{-4}{8}+\frac{2k}{4}=0$,
解得k=1.
∴以点P(-2,1)为中点的弦所在的直线方程为y-1=x+2,即为x-y+3=0.
当经过点P的直线的斜率不存在时不满足题意.
综上可得:以点P(-2,1)为中点的弦所在的直线方程为x-y+3=0.

点评 本题考查了直线与椭圆的位置关系、中点坐标公式、斜率计算公式,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.若f(x)是偶函数,定义域为{x∈R|x≠0},且在(-∞,0)上是增函数,又f(-2)=0,求满足(x+1)f(x-1)>0的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}中,a1=3,an+1=an-5anan+1(n∈N*).
(1)求正:数列{$\frac{1}{{a}_{n}}$}是等差数列
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若x2+y2=1,证明:-$\sqrt{{a}^{2}+{b}^{2}}$≤ax+by≤$\sqrt{{a}^{2}+{b}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.己知等比数列{an}的各项为正数,a1=3,a2+a3=18.
(1)求数列{an}的通项公式;
(2)若函数f(x)=Asin(2x+φ)(A>0,0<φ<π)在x=$\frac{π}{6}$处取得最大值,且最大值为a3,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,D是BC上一点,且B=30°,AD=5,CD=3,AC=7,求AB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.证明不等式:如果a>b>0,c>d>0,那么a2c>b2d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设某项试验每次成功的概率为$\frac{2}{3}$,则在2次独立重复试验中,都不成功的概率(  )
A.$\frac{4}{9}$B.$\frac{1}{3}$C.$\frac{2}{9}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求函数f(x)=x-$\frac{1}{x}$在[1,3]上的最小值.

查看答案和解析>>

同步练习册答案