精英家教网 > 高中数学 > 题目详情
12.设某项试验每次成功的概率为$\frac{2}{3}$,则在2次独立重复试验中,都不成功的概率(  )
A.$\frac{4}{9}$B.$\frac{1}{3}$C.$\frac{2}{9}$D.$\frac{1}{9}$

分析 由已知条件利用相互独立事件的概率乘法公式求解.

解答 解:∵某项试验每次成功的概率为$\frac{2}{3}$,
∴在2次独立重复试验中,都不成功的概率:
p=(1-$\frac{2}{3}$)(1-$\frac{2}{3}$)=$\frac{1}{9}$.
故选:D.

点评 本题考查概率的求法,是基础题,解题时要注意相互独立事件的概率乘法公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若函数y=f(x)的值域为[1,3],则函数F(x)=f(x)+$\frac{1}{f(x)}$的值域为[2,$\frac{4}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1,求以点P(-2,1)为中点的弦所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若对一切x∈[4,+∞),不等式x2-ax+4>0恒成立,则实数a的取值范围是(-∞,5).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数h(x)是定义在(-4,4)上的奇函数,且x∈(0,4)时,h(x)=-log2x.
(1)求h(x)的解析式;
(2)当x∈(-4,0)时,不等式[h(x)+2]2>h(x)m-1恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设函数F(x)=$\frac{f(x)}{{e}^{x}}$是定义在R上的函数,其中f(x)的导函数f′(x)满足f′(x)<f(x)对于x∈R恒成立,则(  )
A.f(2)>e2f(0),f(2015)>e2015f(0)B.f(2)>e2f(0),f(2015)<e2015f(0)
C.f(2)<e2f(0),f(2015)<e2015f(0)D.f(2)<e2f(0),g(2015)>e2015f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.根据下列对于几何体结构特征的描述,说出几何体的名称.
(1)由八个面围成,其中两个面是互相平行且全等的正六边形,其他各面都是矩形;
(2)由五个面围成,其中一个面是正方形,其它各面都是有一个公共顶点的全等三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数f(x)是R上的偶函数,当x>0时,f(x)=$\frac{2}{x}$+x-1.
 (1)用定义证明f(x)在(0,1)上是减函数.
 (2)求当x<0时,函数的解析式.
 (3)在区间(0,1)上,不等式m-f(x)<0恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知点A(-2,0),B(2,0),若动点M(x,y)满足|MA|+|MB|=$\frac{5}{2}$|AB|,则动点M的轨迹方程是(  )
A.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{21}$=1C.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{4}$=1D.$\frac{{y}^{2}}{25}$+$\frac{{x}^{2}}{16}$=1

查看答案和解析>>

同步练习册答案