【题目】已知椭圆,离心率为,两焦点分别为,过的直线交椭圆于两点,且的周长为8.
(1)求椭圆的方程;
(2)过点作圆的切线交椭圆于两点,求弦长的最大值.
【答案】(1)(2)
【解析】
试题分析:(1)求椭圆标准方程,一般利用待定系数法,即根据条件列两个独立方程:一是离心率,二是椭圆定义:的周长为,解方程组得,(2)涉及弦长问题,一般利用直线方程与椭圆方程联立方程组,结合韦达定理和弦长公式求弦长:设切线的方程为,则,再根据直线与圆相切得,即,代入化简得,最后利用基本不等式求最值
试题解析:(1)由题得:,........................1分
,...............................3分
所以.........................4分
又,所以,........................5分
即椭圆的方程为....................6分
(2)由题意知,,设切线的方程为,
由,得...............7分
设,
则.....................8分
,
由过点的直线与圆相切得,即,
所以....11分
,
当且仅当时,,所以的最大值为2...................12分
科目:高中数学 来源: 题型:
【题目】一种饮料每箱装有6听,经检测,某箱中每听的容量(单位:ml)如以下茎叶图所示.
(Ⅰ)求这箱饮料的平均容量和容量的中位数;
(Ⅱ)如果从这箱饮料中随机取出2听饮用,求取到的2听饮料中至少有1听的容量为250ml的概率
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(Ⅰ)讨论函数的单调区间与极值;
(Ⅱ)若且恒成立,求的最大值;
(Ⅲ)在(Ⅱ)的条件下,且取得最大值时,设,且函数有两个零点,求实数的取值范围,并证明:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com