【题目】如图,矩形
中,
,E为边
的中点,将
沿直线
翻转成
(
平面
).若M、O分别为线段
、
的中点,则在
翻转过程中,下列说法错误的是( )
![]()
A.与平面
垂直的直线必与直线
垂直;
B.异面直线
与
所成角是定值;
C.一定存在某个位置,使
;
D.三棱锥
外接球半径与棱
的长之比为定值;
科目:高中数学 来源: 题型:
【题目】2020年1月底因新型冠状病毒感染的肺炎疫情形势严峻,避免外出是减少相互交叉感染最有效的方式.在家中适当锻炼,合理休息,能够提高自身免疫力,抵抗该种病毒.某小区为了调查“宅”家居民的运动情况,从该小区随机抽取了100位成年人,记录了他们某天的锻炼时间,其频率分布直方图如下:
![]()
(1)求a的值,并估计这100位居民锻炼时间的平均值
(同一组中的数据用该组区间的中点值代表);
(2)小张是该小区的一位居民,他记录了自己“宅”家7天的锻炼时长:
序号n | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
锻炼时长m(单位:分钟) | 10 | 15 | 12 | 20 | 30 | 25 | 35 |
(Ⅰ)根据数据求m关于n的线性回归方程;
(Ⅱ)若
(
是(1)中的平均值),则当天被称为“有效运动日”.估计小张“宅”家第8天是否是“有效运动日”?
附;在线性回归方程
中,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率
,直线
与
相交于
,
两点,当
时,![]()
(1)求椭圆
的标准方程.
(2)在椭圆
上是否存在点
,使得当
时,
的平分线总是平行于
轴?若存在,求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】英国“脱欧”这件国际大事引起了社公各界广泛关注,根据最新情况,英国大选之后,预计将会在2020日年1月31日完成“脱欧”,但是因为之前“脱欧”一直被延时,所以很多人认为并不能如期完成,某媒体随机在人群中抽取了100人做调查,其中40岁以下的人群认为能完成的占
,而40岁以上的有10人认为不能完成
(1)完成
列联表,并回答能否有90%的把握认为“预测国际大事的准确率与年龄有关”?
能完成 | 不能完成 | 合计 | |
40岁以上 | 55 | ||
40岁以下 | |||
合计 |
(2)现按照分层抽样抽取20人,在这20人的样本中,再选取40岁以下的4人做深度调查,至少有2人认为英国能够完成“脱欧”的概率为多少?
附表:
| 0.150 | 0.100 | 0.050 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a,b,c均为正数,设函数f(x)=|x﹣b|﹣|x+c|+a,x∈R.
(1)若a=2b=2c=2,求不等式f(x)<3的解集;
(2)若函数f(x)的最大值为1,证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中正确的是( )
A.若两个随机变量的线性相关性越强,则相关系数
的值越接近于1
B.若正态分布
,则![]()
C.把某中学的高三年级560名学生编号:1到560,再从编号为1到10的10名学生中随机抽取1名学生,其编号为
,然后抽取编号为
,
,
,…的学生,这样的抽样方法是分层抽样
D.若一组数据0,
,3,4的平均数是2,则该组数据的方差是![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左右焦点分别为![]()
.经过点
且倾斜角为
的直线
与椭圆
交于
两点(其中点
在
轴上方),
的周长为
.
![]()
(1)求椭圆
的标准方程;
(2)如图,把平面
沿
轴折起来,使
轴正半轴和
轴确定的半平面,与
轴负半轴和
轴所确定的半平面互相垂直,若折叠后
的周长为
,求
的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com