【题目】 (a>b>0)如图,已知椭圆C:的左、右焦点分别为F1、F2 , 离心率为 ,点A是椭圆上任一点,△AF1F2的周长为 . (Ⅰ)求椭圆C的方程;
(Ⅱ)过点Q(﹣4,0)任作一动直线l交椭圆C于M,N两点,记 ,若在线段MN上取一点R,使得 ,则当直线l转动时,点R在某一定直线上运动,求该定直线的方程.
【答案】解(Ⅰ)∵△AF1F2的周长为 , ∴2a+2c= ,即 .
又 ,解得a=2, ,b2=a2﹣c2=1.
∴椭圆C的方程为 .
(Ⅱ)由题意知,直线l的斜率必存在,
设其方程为y=k(x+4),M(x1 , y1),N(x2 , y2).
由
得(1+4k2)x2+32k2x+64k2﹣4=0.
由题意△=(32k2)2﹣4(1+4k2)(64k2﹣4)>0,即12k2﹣1<0.
则 , .
由 ,得(﹣4﹣x1 , ﹣y1)=(x2+4,y2),
∴﹣4﹣x1=λ(x2+4),∴ .
设点R的坐标为(x0 , y0),由 ,
得(x0﹣x1 , y0﹣y1)=﹣λ(x2﹣x0 , y2﹣y0),
∴x0﹣x1=﹣λ(x2﹣x0),
解得 = = ,
而2x1x2+4(x1+x2)= =﹣ ,
,
∴ ,
故点R在定直线x=﹣1上.
【解析】(Ⅰ)利用椭圆的定义、 及b2=a2﹣c2即可解出;(Ⅱ)由题意知,直线l的斜率必存在,设其方程为y=k(x+4),M(x1 , y1),N(x2 , y2).把直线l的方程与椭圆方程联立得到根与系数的关系,再利用向量 , ,即可得出坐标之间的关系,消去λ及k即可得出结论.
【考点精析】解答此题的关键在于理解椭圆的标准方程的相关知识,掌握椭圆标准方程焦点在x轴:,焦点在y轴:.
科目:高中数学 来源: 题型:
【题目】如下图,梯形中,∥,,, ,将沿对角线折起.设折起后点的位置为,并且平面 平面.给出下面四个命题:
①;②三棱锥的体积为;③ 平面;
④平面平面.其中正确命题的序号是( )
A. ①② B. ③④ C. ①③ D. ②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在汶川大地震后对唐家山堰塞湖的抢险过程中,武警官兵准备用射击的方法引爆从湖坝上游漂流而下的一个巨大的汽油罐.已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆.每次射击是相互独立的,且命中的概率都是 .
(Ⅰ)求油罐被引爆的概率;
(Ⅱ)如果引爆或子弹打光则停止射击,设射击次数为ξ.求ξ的分布列及数学期望E(ξ).( 结果用分数表示)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高三()班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题.
(1)求全班人数及分数在之间的频数,并估计该班的平均分数;
(2)若要从分数在之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在之间的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在同一平面内,点P位于两平行直线l1、l2两侧,且P到l1 , l2的距离分别为1,3,点M,N分别在l1 , l2上,| + |=8,则 的最大值为( )
A.15
B.12
C.10
D.9
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知曲线C的参数方程为 (α为参数),以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标轴方程为ρcos(θ﹣ )=2 .
(1)求曲线C的普通方程与直线l的直角坐标方程;
(2)设点P为曲线C上的动点,求点P到直线l距离的最大值及其对应的点P的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若不等式|2x﹣1|﹣|x+a|≥a对任意的实数x恒成立,则实数a的取值范围是( )
A.(﹣∞,﹣ ]
B.(﹣ ,﹣ ]
C.(﹣ ,0)
D.(﹣∞,﹣ ]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了了解一年内的用水情况,抽取了10天的用水量如下表所示:
天数 | 1 | 1 | 1 | 2 | 2 | 1 | 2 |
用水量/吨 | 22 | 38 | 40 | 41 | 44 | 50 | 95 |
(Ⅰ)在这10天中,该公司用水量的平均数是多少?每天用水量的中位数是多少?
(Ⅱ)你认为应该用平均数和中位数中的哪一个数来描述该公司每天的用水量?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系xOy中,曲线C1的参数方程为 (α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+ )=2 .
(1)写出C1的普通方程和C2的直角坐标方程;
(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com