精英家教网 > 高中数学 > 题目详情

【题目】某公司为了了解一年内的用水情况,抽取了10天的用水量如下表所示:

天数

1

1

1

2

2

1

2

用水量/吨

22

38

40

41

44

50

95

(Ⅰ)在这10天中,该公司用水量的平均数是多少?每天用水量的中位数是多少?

(Ⅱ)你认为应该用平均数和中位数中的哪一个数来描述该公司每天的用水量?

【答案】(Ⅰ)(吨),中位数为(吨);(Ⅱ)用中位数描述每天的用水量更合适.

【解析】试题分析:

(1)由题中所给的数据可得:(吨),中位数为(吨);

(2)结合平均数和中位数的性质可知,用中位数描述每天的用水量更合适.

试题解析:

(Ⅰ)(吨).

中位数为(吨).

(Ⅱ)平均数受数据中的极端值(2个95)影响较大,使平均数在估计总体时可靠性降低,10天的用水量有8天都在平均值以下,故用中位数描述每天的用水量更合适.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1时,求函数的值域;

2已知,函数,若函数在区间上是增函数,求的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线的焦点的直线交抛物线于两点, 为坐标原点,若,则的面积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

I)讨论函数的单调性;

II)若,证明:对任意 ,总有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司2016年前三个月的利润(单位:百万元)如下:

月份

利润

(1)求利润关于月份的线性回归方程;

(2)试用(1)中求得的回归方程预测月和月的利润;

(3)试用(1)中求得的回归方程预测该公司2016年从几月份开始利润超过万?

相关公式: ,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

I)若,且时,的最小值是-2,求实数的值;

II)若,且时,有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的内角的对边分别为,已知

(1)

(2),求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为奇函数

1)比较的大小,并说明理由.(提示:

2)若,且恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,面为矩形,的中点,交于点.

证明:

,求四面体AA1BC的体积.

查看答案和解析>>

同步练习册答案