精英家教网 > 高中数学 > 题目详情

【题目】已知函数为奇函数

1)比较的大小,并说明理由.(提示:

2)若,且恒成立,求实数的取值范围.

【答案】1;(2.

【解析】试题分析:(1)由于函数为奇函数, ,求得为减函数,通过计算证得,所以;(2)利用函数的奇偶性,化简原不等式为,根据单调性和定义域,列不等式,分离参数求得参数的取值范围.

试题解析:

1函数为奇函数,

,对恒成立,

...............2

...................................4

................................6

上递减,.............7

2)由为奇函数可得

上递减,

恒成立,

上递增,,又..........12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数上的偶函数.

(1)求实数的值;

(2)判断并证明函数上单调性;

(3)求函数上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了了解一年内的用水情况,抽取了10天的用水量如下表所示:

天数

1

1

1

2

2

1

2

用水量/吨

22

38

40

41

44

50

95

(Ⅰ)在这10天中,该公司用水量的平均数是多少?每天用水量的中位数是多少?

(Ⅱ)你认为应该用平均数和中位数中的哪一个数来描述该公司每天的用水量?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量

(1)分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足的概率

(2)在连续区间上取值,求满足的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,圆的参数方程为为参数,在以原点为极点,轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为.

1求圆的普通方程和直线的直角坐标方程;

2设直线轴,轴分别交于两点,点是圆上任一点,求两点的极坐标和面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的内角的对边分别为,且

1)求角的大小;

2)若的面积为,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

已知平面直角坐标系,以为极点,轴的非负半轴为极轴建立极坐标系,点的极坐标为,曲线的参数方程为为参数).

1写出点的直角坐标及曲线的直角坐标方程;

2为曲线上的动点,求中点到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线半径为2的圆相切圆心轴上且在直线的右上方

(1)求圆的方程;

(2)若直线过点且与圆交于两点轴上方轴下方),问在轴正半轴上是否存在定点使得轴平分若存在请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】方程两个不等的负根;方程实根.若”为真,“假,求取值范围.

查看答案和解析>>

同步练习册答案