精英家教网 > 高中数学 > 题目详情

【题目】已知向量

(1)分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足的概率

(2)在连续区间上取值,求满足的概率.

【答案】(1);(2)

【解析】

试题分析:(1)本题为古典概型问题.基本事件共个,满足的基本事件有,由此可得结论;(2)由题意知,本题为几何概型问题,且概率为面积比.

试题解析:(1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为个...............1分

所以满足的基本事件为,共3个..............3分

故满足的概率为...............5分

(2)在连续区间上取值,则全部基本事件的结果为...............6分

满足的基本事件的结果为..............8分

画出图形如图,矩形面积为25

阴影部分面积为...............11分

故满足的概率为...............12分.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一青蛙从点开始依次水平向右和竖直向上跳动,其落点坐标依次是如图所示,坐标以已知条件为准表示青蛙从点到点所经过的路程

1若点为抛物线准线上一点,点均在该抛物线上,并且直线经过该抛物线的焦点,证明

2若点要么落在所表示的曲线上,要么落在所表示的曲线上,并且,试写出不需证明

3若点要么落在所表示的曲线上,要么落在所表示的曲线上,并且,求的表达式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

I)讨论函数的单调性;

II)若,证明:对任意 ,总有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

I)若,且时,的最小值是-2,求实数的值;

II)若,且时,有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的内角的对边分别为,已知

(1)

(2),求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公司从某大学招收毕业生,经过综合测试,录用了名男生和名女生,这名毕业生的测试成绩如茎叶图所示(单位:分),公司规定:成绩在分以上者到甲部门工作;分以下者到乙部门工作,另外只有成绩高于分才能担任助理工作

(1)如果用分层抽样的方法从甲部门人选和乙部门人选中选取人,再从这人中选人,那么至少有一人是甲部门人选的概率是多少?

(2)若从所有甲部门人选中随机选人,用表示所选人员中能担任助理工作的男生人数,写出的分布列,并求出的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为奇函数

1)比较的大小,并说明理由.(提示:

2)若,且恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆内有一点为过点且倾斜角为的弦.

(1)当时,求弦的长;

(2)当弦平分时,圆经过点且与直线相切于点,求圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2009年推出一种新型家用轿车,购买时费用万元,每年应交保险费、养路费及汽油费共万元,汽车的维修费为:第一年无维修费用,第二年为万元,从第三年起,每年的维修费均比上一年增加万元.(1)设该辆轿车使用的总费用(包括购买费用、保险、养路费、汽油及维修费)表达式;(2)这种汽车使用多少年报废最合算即该车使用多少年,年平均费用最少)?

查看答案和解析>>

同步练习册答案