【题目】已知函数,其中.
(I)讨论函数的单调性;
(II)若,证明:对任意 ,总有.
【答案】(I)①若,在,上单调递增,在上单调递减,②若时,在上单调递增,③若时,在,上单调递增,在上单调递减;(II)证明见解析.
【解析】试题分析:(I)先求函数导数,再求导函数零点或,根据两个零点大小分三种情况讨论:若,在,上单调递增,在上单调递减.若时,则在上单调递增.若时,则在,上单调递增,在上单调递减.(II)同(1)可得:当时,在上单调递增,因此将所证不等式变量分离得 ,构造函数,只需利用导数证明函数单调递减
试题解析:解:(I)∵,,
令,得或
①若,则时,;
时,;
时,,
故函数在,上单调递增,在上单调递减
②若时,则在上单调递增
③若时,则在,上单调递增,在上单调递减
(II)由(I)可知,当时,在上单调递增,不妨设,则有,,于是要证,即证,
即证,
令,
∵,
∵,,
∴在上单调递减,即有.
故.
科目:高中数学 来源: 题型:
【题目】某渔场鱼群的最大养殖量为吨,为保证鱼群的生长空间,实际的养殖量要小于,留出适当的空闲量,空闲量与最大养殖量的比值叫空闲率,已知鱼群的年增加量(吨)和实际养殖量(吨)与空闲率的乘积成正比(设比例系数).
(1)写出与的函数关系式,并指出定义域;
(2)求鱼群年增长量的最大值;
(3)当鱼群年增长量达到最大值时,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中正确的是
A. 若直线与平面平行,则与平面内的任意一条直线都没有公共点;
B. 若直线与平面平行,则与平面内的任意一条直线都平行;
C. 若直线上有无数个点不在平面 内,则;
D. 如果两条平行线中的一条与一个平面平行,那么另一条也与这个平面平行.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产A,B两种产品,生产1吨A种产品需要煤4吨、电18千瓦;生产1吨B种产品需要煤1吨、电15千瓦。现因条件限制,该企业仅有煤10吨,并且供电局只能供电66千瓦,若生产1吨A种产品的利润为10000元;生产1吨B种产品的利润是5000元,试问该企业如何安排生产,才能获得最大利润?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设△ABC的三内角A,B,C的对边分别是a,b,c,且b(sinB-sinC)+(c-a)(sinA+sinC)=0.
(Ⅰ)求角A的大小;
(Ⅱ)若,,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了了解一年内的用水情况,抽取了10天的用水量如下表所示:
天数 | 1 | 1 | 1 | 2 | 2 | 1 | 2 |
用水量/吨 | 22 | 38 | 40 | 41 | 44 | 50 | 95 |
(Ⅰ)在这10天中,该公司用水量的平均数是多少?每天用水量的中位数是多少?
(Ⅱ)你认为应该用平均数和中位数中的哪一个数来描述该公司每天的用水量?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量.
(1)若分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足的概率;
(2)若在连续区间上取值,求满足的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线:,半径为2的圆与相切,圆心在轴上且在直线的右上方.
(1)求圆的方程;
(2)若直线过点且与圆交于,两点(在轴上方,在轴下方),问在轴正半轴上是否存在定点,使得轴平分?若存在,请求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com