精英家教网 > 高中数学 > 题目详情
如图,四边形ABCD中,
|AB
|+|
BD
|+|
DC
|=4
|
AB
|•|
BD
|+|
BD
|•|
DC
|=4
AB
BD
=
BD
DC
=0
.则(
AB
+
DC
)•
AC
的值为______.
精英家教网
因为
|AB
|+|
BD
|+|
DC
|
=4 可得|
BD
|=4-(
|AB
|+|
DC
|)
,而|
AB
|•|
BD
|+|
BD
|•|
DC
|=4

可得(
|AB
|+|
DC
|)[4-(
|AB
|+|
DC
|)]=4
(
|AB
|+|
DC
|)
2
=4

(
AB
+
DC
)•
AC
=(
AB
+
DC
)•(
AB
+
BD
+
DC
)=(|
AB
|+|
DC
|)
2
=4,
故答案为:4.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四边形ABCD与A′ABB′都是边长为a的正方形,点E是A′A的中点,A′A⊥平面ABCD.
(1) 求证:A′C∥平面BDE;
(2) 求证:平面A′AC⊥平面BDE
(3) 求平面BDE与平面ABCD所成锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(Ⅰ)证明PQ⊥平面DCQ;
(Ⅱ)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为矩形,且AD=2,AB=1,PA⊥平面ABCD,PA=1,E为BC的中点.
(1)求点C到面PDE的距离;  
(2)求二面角P-DE-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD内接于⊙O,如果它的一个外角∠DCE=64°,那么∠BOD
128°
128°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(1)证明:平面PQC⊥平面DCQ;
(2)求二面角D-PQ-C的余弦值.

查看答案和解析>>

同步练习册答案