精英家教网 > 高中数学 > 题目详情
6.已知等差数列{an}满足:a3=7,a5+a7=26,{an}的前n项和为Sn
(Ⅰ)求an及Sn
(Ⅱ) 令${b_n}=\frac{n+1}{S_n^2}(n∈{N^*})$,证明:对于任意的n∈N*,数列{bn}的前n项和${T_n}<\frac{5}{16}$.

分析 (Ⅰ)通过等差数列的性质及已知条件可知a9=19,进而可求出公差d,计算即得结论;
(Ⅱ)通过(I)裂项可知bn=$\frac{1}{4}$[$\frac{1}{{n}^{2}}$-$\frac{1}{(n+2)^{2}}$],进而并项相加、放缩即得结论.

解答 (Ⅰ)解:∵数列{an}为等差数列,
∴a3+a9=a5+a7=26,
又∵a3=7,
∴a9=19,d=$\frac{{a}_{9}-{a}_{3}}{9-3}$=$\frac{19-7}{9-3}$=2,
∴an=a3+(n-3)d=7+2n-6=2n+1,
Sn=$\frac{n({a}_{1}+{a}_{n})}{2}$=$\frac{n(3+2n+1)}{2}$=n(n+2);
(Ⅱ)证明:由(I)可知bn=$\frac{n+1}{{n}^{2}(n+2)^{2}}$=$\frac{1}{4}$[$\frac{1}{{n}^{2}}$-$\frac{1}{(n+2)^{2}}$],
则Tn=$\frac{1}{4}$[1-$\frac{1}{{3}^{2}}$+$\frac{1}{{2}^{2}}$-$\frac{1}{{4}^{2}}$+…+$\frac{1}{(n-1)^{2}}$-$\frac{1}{(n+1)^{2}}$+$\frac{1}{{n}^{2}}$-$\frac{1}{(n+2)^{2}}$]
=$\frac{1}{4}$[1+$\frac{1}{{2}^{2}}$-$\frac{1}{(n+1)^{2}}$-$\frac{1}{(n+2)^{2}}$]
<$\frac{1}{4}$(1+$\frac{1}{{2}^{2}}$)
=$\frac{5}{16}$.

点评 本题考查数列的通项及前n项和,考查运算求解能力,考查裂项相消法,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.某旅游团要从8个景点中选三个作为“五一”假期三日游的目的地.
(1)如果甲、乙两个景点必须选且只能选一个,那么有多少种不同的选法?
(2)如果甲、乙两个景点至多选一个,那么有多少种不同的选法?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设a∈R,b∈[0,2π),若对任意实数x都有sin(3x-$\frac{π}{3}$)=sin(ax+b),则满足条件的有序实数对(a,b)的对数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设a,b,c,d均为正数,且a-c=d-b,证明:
(Ⅰ)若ab>cd,则$\sqrt{a}$+$\sqrt{b}$>$\sqrt{c}$+$\sqrt{d}$;
(Ⅱ)$\sqrt{a}$+$\sqrt{b}$>$\sqrt{c}$+$\sqrt{d}$是|a-b|<|c-d|的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若直线y=kx-2与抛物线y2=8x交于A、B两点,且AB中点的横坐标为2,则此直线的斜率是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}中,a1=3,${a_{n+1}}={a_n}^2-n{a_n}+α,n∈{N^*},α∈R$.
(1)若an≥2n对?n∈N*都成立,求α的取值范围;
(2)当α=-2时,证明$\frac{1}{{{a_1}-2}}+\frac{1}{{{a_2}-2}}+…+\frac{1}{{{a_n}-2}}<2(n∈{N^*})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设f(x)=|x-m|+|x+m|,x∈R.记不等式f(2)>5的解集为M.
(1)若m0∈M,求m02+$\frac{64}{{{m}_{0}}^{2}+1}$的最小值;
(2)若a,b∈M,证明:16a2b2+625>100a2+100b2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求曲线$\left\{\begin{array}{l}{x=2\sqrt{3}cosθ}\\{y=3\sqrt{2}sinθ}\end{array}\right.$(θ为参数)中两焦点间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知点M(-3,0),N(3,0),B(2,0),动圆C与直线MN切于点B,过M,N与圆C相切的两直线交于点P,则P的轨迹方程为(  )
A.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1(x<-2)B.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1(x>2)C.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{5}$=1(x>0)D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1(x>0)

查看答案和解析>>

同步练习册答案