精英家教网 > 高中数学 > 题目详情

【题目】定义 为n个正数p1 , p2 , …,pn的“均倒数”.若已知正数数列{an}的前n项的“均倒数”为 ,又bn= ,则 + + +…+ =( )
A.
B.
C.
D.

【答案】C
【解析】解:由已知定义,得到 =

∴a1+a2+…+an=n(2n+1)=Sn

即Sn=2n2+n.

当n=1时,a1=S1=3.

当n≥2时,an=Sn﹣Sn1=(2n2+n)﹣[2(n﹣1)2+(n﹣1)]=4n﹣1.

当n=1时也成立,

∴an=4n﹣1;

∵bn= =n,

= =

+ + +…+ =1﹣ + +…+ =1﹣ =

+ + +…+ =

所以答案是:C

【考点精析】掌握数列的前n项和是解答本题的根本,需要知道数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】四棱锥S﹣ABCD的底面ABCD是正方形,各侧棱长与底面的边长均相等,M为SA的中点,则直线BM与SC所成的角的余弦值为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .用反证法证明方程f(x)=0 没有负数根.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=3x2﹣2x,数列{an}的前n项和为Sn , 点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(1)求数列{an}的通项公式;
(2)设bn= ,Tn是数列{bn}的前n项和,求使得Tn 对所有n∈N*都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对应的边分别为a,b,c,若c(acosB﹣ b)=a2﹣b2
(1)求角A;
(2)若a= ,求c﹣b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ax﹣lnx,a∈R.
(1)若a=0时,求函数y=f(x)在点(1,f(1))处的切线方程;
(2)若函数f(x)在[1,2]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记定义在R上的函数y=f(x)的导函数为f′(x).如果存在x0∈[a,b],使得f(b)﹣f(a)=f′(x0)(b﹣a)成立,则称x0为函数f(x)在区间[a,b]上的“中值点”.那么函数f(x)=x3﹣3x在区间[﹣2,2]上的“中值点”为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅游公司为甲,乙两个旅游团提供四条不同的旅游线路,每个旅游团可任选其中一条旅游线路.
(1)求甲、乙两个旅游团所选旅游线路不同的概率;
(2)某天上午9时至10时,甲,乙两个旅游团都到同一个著名景点游览,20分钟后游览结束即离去.求两个旅游团在该著名景点相遇的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2x﹣2
(Ⅰ)用定义法证明:函数f(x)在区间(﹣∞,1]上是减函数;
(Ⅱ)若函数g(x)=f(x)﹣mx是偶函数,求m的值.

查看答案和解析>>

同步练习册答案