分析 由f(x)的解析式便知f(x)关于x=a对称,而由f(1+x)=f(3-x)知f(x)关于x=2对称,从而得出a=2,这样便可得出f(x)的单调递增区间为[2,+∞),而f(x)在[m,+∞)上单调递增,从而便得出m的最小值为2
解答 解:∵f(x)=2|x-a|;
∴f(x)关于x=a对称;
又f(2+x)=f(2-x);
∴f(x)关于x=2对称;
∴a=2;
∴f(x)=$\left\{\begin{array}{l}{{2}^{x-2}}\\{{2}^{-x+2}}\end{array}\right.$;
∴f(x)的单调递增区间为[2,+∞);
又f(x)在[m,+∞)上单调递增;
∴实数m的最小值为2.
故答案为:2
点评 考查函数图象的对称性,清楚f(x)=|x-a|的图象关于x=a对称,由f(x+a)=f(b-x)知f(x)关于直线x=$\frac{a+b}{2}$对称,以及指数函数和分段函数的单调性
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$ | B. | $\frac{π-2}{2}$ | C. | $\frac{π}{6}$ | D. | $\frac{4-π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 102 | B. | 103 | C. | 104 | D. | 105 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com