精英家教网 > 高中数学 > 题目详情
4.${∫}_{0}^{1}$($\sqrt{1-{x}^{2}}$-x)dx等于(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{π-1}{4}$D.$\frac{π-2}{4}$

分析 原积分化为=${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx-${∫}_{0}^{1}$xdx,其中${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx表示以原点为圆心以1为半径的圆的面积的四分之一,问题得以解决.

解答 解:${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx表示以原点为圆心以1为半径的圆的面积的四分之一,故${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx=$\frac{π}{4}$,
${∫}_{0}^{1}$xdx=$\frac{1}{2}{x}^{2}$|${\;}_{0}^{1}$=$\frac{1}{2}$,
∴$\int_{\;0}^{\;1}{(\sqrt{1-{x^2}}}-x)\;dx$=${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx-${∫}_{0}^{1}$xdx=$\frac{π}{4}$-$\frac{1}{2}$=$\frac{π-2}{4}$,
故选:D.

点评 本题主要考查了定积分的几何意义和定积分的计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.设P、Q分别是圆(x-1)2+y2=$\frac{1}{4}$和椭圆$\frac{{x}^{2}}{4}$+y2=1上的动点,则P、Q两点间的最小距离是$\frac{\sqrt{6}}{3}-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若复数(m2-m)+mi为纯虚数,则实数m的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=sin(x+$\frac{π}{4}$)-sin2x(x∈R)的最大值是.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,已知直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{3}{5}t}\\{y=1+\frac{4}{5}t}\end{array}\right.$(t为参数).以直角坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)若P(x,y)是直线l与曲线C的内部的公共点,求x-y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若存在直线l与曲线C1和曲线C2都相切,则称曲线C1和曲线C2为“相关曲线”,有下列四个命题:
①有且只有两条直线l使得曲线C1:x2+y2=4和曲线C2:x2+y2-4x+2y+4=0为“相关曲线”;
②曲线C1:y=$\frac{1}{2}\sqrt{{x^2}+1}$和曲线C2:y=$\frac{1}{2}\sqrt{{x^2}-1}$是“相关曲线”;
③当b>a>0时,曲线C1:y2=4ax和曲线C2:(x-b)2+y2=a2一定不是“相关曲线”;
④必存在正数a使得曲线C1:y=alnx和曲线C2:y=x2-x为“相关曲线”.
其中正确命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在四棱锥P-ABC中,PD⊥平面ABCD,四边形ABCD是菱形,且∠DAB=60°,PD=AD,点E为AB中点,点F为PD中点.
(1)求证:平面PEF⊥平面PAB;
(2)求二面角P-AB-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某学校共有师生2400人,现用分层抽样的方法,从所有师生中抽取一个容量为150的样本,已知从学生中抽取的人数为135,那么该学校的教师人数是(  )
A.15B.200C.240D.2160

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图1,以BD为直径的圆O经过A,C两点,延长DA,CB交于P点,将PAB沿线段AB折起,使P点在底面ABCD的射影恰为AD的中点Q,如图2,AB=BC=1,BD=2,线段PB,PC的中点为E、F.
(1)判断四点A,D,E,F是否共面,并说明理由;
(2)求平面PAB与平面PCD的夹角的余弦值.

查看答案和解析>>

同步练习册答案