精英家教网 > 高中数学 > 题目详情
6.已知函数$f(x)=\sqrt{3}sinxcosx-{cos^2}x-\frac{1}{2},x∈R$.
( I)求$f(x)=-\frac{1}{2}$时x取值的集合;
( II)已知△ABC内角A,B,C的对边分别为a,b,c,且c=3,f(C)=0,若向量$\overrightarrow m=(1,sinA)与\overrightarrow n=(2,sinB)$共线,求a,b的值.

分析 (I)利用三角函数恒等变换的应用化简函数解析式可得f(x)=$sin(2x-\frac{π}{6})-1$,可得$sin(2x-\frac{π}{6})=\frac{1}{2}$,解得x取值的集合.
(II)由题意可得$sin(2C-\frac{π}{6})=1$,结合C的范围,可求C的值,由m与n共线得sinB-2sinA=0,由正弦定理可得b=2a. ①由余弦定理,得$9={a^2}+{b^2}-2abcos\frac{π}{3}$. ②,解①②组成的方程组,即可得解.

解答 (本题满分为12分)
解:(I)$f(x)=\sqrt{3}sinxcosx-{cos^2}x-\frac{1}{2}=\frac{{\sqrt{3}}}{2}sin2x-\frac{1}{2}cos2x-1$=$sin(2x-\frac{π}{6})-1$…(3分)
由$f(x)=-\frac{1}{2}$得$sin(2x-\frac{π}{6})=\frac{1}{2}$,
故$2x-\frac{π}{6}=\frac{π}{6}+2kπ或2x-\frac{π}{6}=\frac{5π}{6}+2kπ,k∈Z$,
所以x取值的集合为:$\left\{{\left.x\right|x=\frac{π}{6}+kπ或x=\frac{π}{2}+kπ,k∈Z}\right\}$…(5分)
(II)∵$f(C)=sin(2C-\frac{π}{6})-1=0$,即$sin(2C-\frac{π}{6})=1$,
∵$0<C<π,-\frac{π}{6}<2C-\frac{π}{6}<\frac{11π}{6}$,
∴$2C-\frac{π}{6}=\frac{π}{2}$,
∴$C=\frac{π}{3}$…(6分)
∵m与n共线,∴sinB-2sinA=0,
由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}$,得b=2a. ①…(8分)
∵c=3,由余弦定理,得$9={a^2}+{b^2}-2abcos\frac{π}{3}$. ②…(10分)
解①②组成的方程组,得$\left\{\begin{array}{l}a=\sqrt{3}\\ b=2\sqrt{3}.\end{array}\right.$…(12分)

点评 本题主要考查了三角函数恒等变换的应用,正弦函数的图象和性质,考查了正弦定理,余弦定理,平面向量与共线向量的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.求函数y=(log2x)2-4log2x+5(1≤x≤2)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.直线x=0被圆x2+y2-6x-2y-15=0所截得的弦长为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数$f(x)=\frac{1}{2}{x^2}-2ax+(2a-1)lnx$,其中a∈R.
(Ⅰ)a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)讨论函数y=f(x)的单调性;
(Ⅲ)当$a>\frac{1}{2}$时,证明对?x∈(0,2),都有f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设两圆C1,C2都和两坐标轴相切,且都过点(3,2),则两圆心的距离C1C2=4$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知数列{an}的通项公式是an=n2+kn+2,若对所有的n∈N*,都有an+1>an成立,则实数k的取值范围是(  )
A.(0,+∞)B.(-1,+∞)C.(-2,+∞)D.(-3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.圆心在y轴上,且过点(3,1)的圆与x轴相切,则该圆的方程是(  )
A.x2+y2+10y=0B.x2+y2-10y=0C.x2+y2+10x=0D.x2+y2-10x=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,过圆外一点P的直线交圆O于A、B两点,PE是圆O的切线,CP平分∠APE,分别与AE、BE交于点C,D.
求证:(1)CE=DE;  
(2)$\frac{CA}{CE}$=$\frac{PE}{PB}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知全集U={1,2,3,4,5,6,7},A={2,4,6},B={1,3,5,6,7},则A∩(∁UB)等于(  )
A.{2,4,6}B.{1,3,5}C.{2,4}D.{2,5}

查看答案和解析>>

同步练习册答案