精英家教网 > 高中数学 > 题目详情
11.已知数列{an}的通项公式是an=n2+kn+2,若对所有的n∈N*,都有an+1>an成立,则实数k的取值范围是(  )
A.(0,+∞)B.(-1,+∞)C.(-2,+∞)D.(-3,+∞)

分析 由题意结合对所有的n∈N*,都有an+1>an成立,可得得k>-2n-1对所有的n∈N*都成立,求出函数-2n-1的最大值得答案.

解答 解:∵an=n2+kn+2,且对所有的n∈N*,都有an+1>an成立,
∴(n+1)2+k(n+1)+2>n2+kn+2,整理得k>-2n-1对所有的n∈N*都成立,
∵-2n-1≤-3,则k>-3.
故选:D.

点评 本题考查数列的函数特性,考查了不等式恒成立的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.函数f(x)=$\left\{\begin{array}{l}{(a-1)x+\frac{5}{2},x≤1}\\{\frac{2a+1}{x},x>1}\end{array}\right.$,在定义域R上单调递减,则a的取值范围是(-$\frac{1}{2}$,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设数列{an}的前n项和为Sn,且${S_n}=2-{(\frac{1}{2})^{n-1}},n∈{N^*}$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列bn=$\frac{n}{2}{a_n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.圆C:x2+y2-6x-2y+5=0的周长是2$\sqrt{5}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=\sqrt{3}sinxcosx-{cos^2}x-\frac{1}{2},x∈R$.
( I)求$f(x)=-\frac{1}{2}$时x取值的集合;
( II)已知△ABC内角A,B,C的对边分别为a,b,c,且c=3,f(C)=0,若向量$\overrightarrow m=(1,sinA)与\overrightarrow n=(2,sinB)$共线,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)已知$f(1+\frac{1}{x})=\frac{1}{x^2}$-1,求f(x)的解析式.
(2)已知f(x)是二次函数,且满足f(2)=4,f(-3)=4,且f(x)的最小值为2,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x|x-a|(a>0).
(1)不等式f(x)≤1在[0,n]上恒成立,当n取得最大值时,求a的值;
(2)在(1)的条件下.若对于任意的x∈R,不等式f(x+t)≥f(x)-t(t>0)恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.平面直角坐标系中,已知F(1,0),动点P(-1,t),线段PF的垂直平分线与直线y=t的交点为M,设M的轨迹为曲线?,则?的方程为y2=4x,A、B、C为曲线?上三点,当$\overrightarrow{FA}+\overrightarrow{FB}+\overrightarrow{FC}=\overrightarrow 0$时,称△ABC为“和谐三角形”,则“和谐三角形”有无数个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系中,圆C1:x2+y2=1经过伸缩变换$\left\{\begin{array}{l}{x′=3x}\\{y′=2y}\end{array}\right.$后得到曲线C2,以坐标原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,建立极坐标系,直线l的极坐标方程为cosθ+sinθ=$\frac{10}{ρ}$.
(Ⅰ)求曲线C2的直角坐标方程及直线l的直角坐标方程;
(Ⅱ)在C2上求一点M,是点M到直线l的距离最小,并求出最小距离.

查看答案和解析>>

同步练习册答案