精英家教网 > 高中数学 > 题目详情
8.已知椭圆C的左、右焦点分别为(-$\sqrt{3},0$)、($\sqrt{3},0$),且经过点($\sqrt{3},\frac{1}{2}$).
( I)求椭圆C的方程:
( II)直线y=kx(k∈R,k≠0)与椭圆C相交于A,B两点,D点为椭圆C上的动点,且|AD|=|BD|,请问△ABD的面积是否存在最小值?若存在,求出此时直线AB的方程:若不存在,说明理由.

分析 (I)由椭圆的焦点在x轴上,设椭圆的标准方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),则c=$\sqrt{3}$,b2=a2-c2=3,将点($\sqrt{3},\frac{1}{2}$)代入椭圆方程:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{a}^{2}-3}=1$,即可求得a和b的值,求得椭圆C的方程:
(II)D在AB的垂直平分线上,OD:$y=-\frac{1}{k}x$,将直线方程代入椭圆方程求得(1+4k2)x2=4,则|AB|=2|OA|=4$\sqrt{\frac{{{k^2}+1}}{{4{k^2}+1}}}$,|OC|=2$\sqrt{\frac{{{k^2}+1}}{{{k^2}+4}}}$,可知S△ABC=2S△OAC=|OA|×|OC|=$\frac{{4(1+{k^2})}}{{(1+4{k^2})({k^2}+4)}}$,根据基本不等式的性质可知:$\sqrt{(1+4{k^2})({k^2}+4)}≤\frac{{5(1+{k^2})}}{2}$,因此S△ABC=2S△OAC≥$\frac{8}{5}$,即可求得直线AB的方程.

解答 解:(I)由题意可知:椭圆的焦点在x轴上,设椭圆的标准方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),
则c=$\sqrt{3}$,b2=a2-c2=3,
将点($\sqrt{3},\frac{1}{2}$)代入椭圆方程:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{a}^{2}-3}=1$,即$\frac{3}{{a}^{2}}+\frac{1}{4({a}^{2}-3)}=1$,
解得:a2=4,b2=1,
∴椭圆C的方程:$\frac{x^2}{4}+{y^2}=1$…(4分)
(II)D在AB的垂直平分线上,
∴OD:$y=-\frac{1}{k}x$.…(5分)
由$\left\{\begin{array}{l}y=kx\\ \frac{x^2}{4}+{y^2}=1\end{array}\right.$,可得(1+4k2)x2=4,
|AB|=2|OA|=2$\sqrt{{x^2}+{y^2}}$=4$\sqrt{\frac{{{k^2}+1}}{{4{k^2}+1}}}$,…(6分)
同理可得|OD|=2$\sqrt{\frac{{{k^2}+1}}{{{k^2}+4}}}$,…(7分)
则S△ABD=2S△OAD=|OA|×|OD|=$\frac{4(1+{k}^{2})}{\sqrt{(4{k}^{2}+1)(k{{\;}^{2}+}^{\;}4)}}$.…(8分)
由于$\sqrt{(1+4{k^2})({k^2}+4)}≤\frac{{5(1+{k^2})}}{2}$,…(10分)
∴S△ABD=2S△OAD≥$\frac{8}{5}$,
当且仅当1+4k2=k2+4,即k=±1时取等号.
∴△ABD的面积取最小值$\frac{8}{5}$,直线AB的方程为y=±x.…(12分)

点评 本题考查椭圆的标准方程,直线与椭圆的位置关系,考查三角形的面积公式与基本不等式性质的应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设A={x|2x2+ax+2=0},2∈A,集合B={x|x2=1}.
(1)求a的值,并写出集合A的所有子集;
(2)若集合C={x|bx=1},且C⊆B,求实数b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数:f(x)=-x3-3x2+(1+a)x+b(a<0,b∈R).
(1)令h(x)=f(x-1)-b+a+3,判断h(x)的奇偶性,并讨论h(x)的单调性;
(2)若g(x)=|f(x)|,设M(a,b)为g(x)在[-2,0]的最大值,求M(a,b)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),若椭圆C上的一动点到右焦点的最短距离为2-$\sqrt{2}$,且右焦点到直线x=$\frac{a}{c}$的距离等于短半轴的长.已知点P(4,0),过P点的直线l与椭圆C交于M,N两点.
(Ⅰ)求椭圆C的方程;         
(Ⅱ)求$\overrightarrow{OM}$•$\overrightarrow{ON}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\sqrt{x}$+1,若f(x)=3,则x=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,CD为△ABC外接圆的切线,AB的延长线交直线CD与点D,E,F分别为弦AB,AC上的点,且BC•AE=DC•AF,B,E,F,C四点共圆.
(1)求证:CA为△ABC外接圆的直径;
(2)若DB=BE=EA,求过B,E,F,C四点的圆的半径与△ABC外接圆的半径比值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若A={x|x>-1},B={x|x-3<0},则A∩B={x|-1<x<3}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若一个幂函数f(x)图象过$(2,\frac{1}{2})$点,则$f(\frac{1}{2})$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知角α终边过点P(4,-3),则下列各式中正确的是(  )
A.sinα=$\frac{3}{5}$B.cosα=-$\frac{4}{5}$C.tanα=-$\frac{3}{4}$D.tanα=-$\frac{4}{3}$

查看答案和解析>>

同步练习册答案