分析 (1)由已知条件得△AFE∽△CBD,从而∠AFE=∠CBD,又B,E,F,C四点共圆,得∠CBD=∠CBE=90°,由此能证明CA是△ABC外接圆的直径.
(2)连结CE,由CE为B,E,F,C所共圆的直径,得CD=CE,由切线性质得AC⊥DC,由此能求出过B、E、F、C四点的圆的半径与△ABC外接圆半径的比值.
解答 (1)证明:∵BC•AE=DC•AF,
∴$\frac{BC}{DC}=\frac{AF}{AE}$…(1分)
又 DC为圆的切线
∴∠DCB=∠EAF…(2分)
∴△AFE∽△CBD…(3分)
∴∠AFE=∠CBD…(4分)![]()
又B,E,F,C四点共圆
∴∠AFE=∠CBE…(5分)
∴∠CBD=∠CBE=90°
∴CA是△ABC外接圆的直径…(6分)
(2)解:连结CE,∵∠CBE=90°
∴CE为B,E,F,C所共圆的直径…(7分)
∵DB=BE,且BC⊥DE
∴CD=CE…(8分)
∵DC为圆的切线,AC为该圆的直径
∴AC⊥DC…(9分)
设DB=BE=EA=a,在Rt△ACD中,
CD2=BD•DA=3a2,AC2=AB•AD=6a2,
∴$\frac{C{D}^{2}}{A{C}^{2}}$=$\frac{1}{2}$,即$\frac{CD}{AC}$=$\frac{\sqrt{2}}{2}$,
∴$\frac{CE}{AC}$=$\frac{\sqrt{2}}{2}$,
∴过B、E、F、C四点的圆的半径与△ABC外接圆半径的比值为$\frac{\sqrt{2}}{2}$.
点评 本题考查三角形外接圆直径的证明,考查两圆半径比值的求法,解题时要认真审题,注意四点共圆的性质的灵活运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{6}$或$\frac{5π}{6}$ | D. | $\frac{π}{3}$或$\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com