精英家教网 > 高中数学 > 题目详情
12.定义在[1,+∞)上的函数f(x)满足:
①f(2x)=cf(x)(c为正常数);
②当2≤x≤4时,f(x)=1-|x-3|.若函数图象上所有取极大值的点均落在同一条以原点为顶点的抛物线上,则常数c=4或$\sqrt{2}$.

分析 设出原点为顶点的抛物线方程可设为x2=py(p≠0)或y2=qx(q≠0),得到$\frac{9}{p}$=($\frac{c}{4}$)n-2对n∈N*恒成立或3q=($\frac{c}{\sqrt{2}}$)n-2对n∈N*恒成立,求出c的值即可.

解答 解:记函数f(x)=cn-2(1-|$\frac{x}{{2}^{n-2}}$-3|),(2n-1≤x≤2n,n∈N*)的极大值点为pn(xn,yn).
以原点为顶点的抛物线方程可设为x2=py(p≠0)或y2=qx(q≠0).
若pn(3•2n-2,cn-2).在抛物线x2=py(p≠0)上,则(3•2n-22=pcn-2
即$\frac{9}{p}$=($\frac{c}{4}$)n-2对n∈N*恒成立,从而c=4,p=9,抛物线方程为x2=9y;
若pn(3•2n-2,cn-2).在抛物线y2=qx(q≠0)上,则(cn-22=3q•2n-2
即3q=($\frac{c}{\sqrt{2}}$)n-2对n∈N*恒成立,从而c=$\sqrt{2}$,q=$\frac{1}{3}$,抛物线方程为y2=$\frac{1}{3}$x,
综上:c=4或$\sqrt{2}$,
故答案为:4或$\sqrt{2}$.

点评 本小题主要考查抛物线的标准方程、利用导数研究函数的极值、不等式的解法,考查运算求解能力、化归与转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,CD为△ABC外接圆的切线,AB的延长线交直线CD与点D,E,F分别为弦AB,AC上的点,且BC•AE=DC•AF,B,E,F,C四点共圆.
(1)求证:CA为△ABC外接圆的直径;
(2)若DB=BE=EA,求过B,E,F,C四点的圆的半径与△ABC外接圆的半径比值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\frac{2\sqrt{3}}{3}$,其右焦点到直线x=$\frac{{a}^{2}}{c}$的距离为$\frac{1}{2}$,则此双曲线的方程为$\frac{{x}^{2}}{3}-{y}^{2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆C的圆心在坐标原点,且过点M($\sqrt{3}$,1).
(Ⅰ)求圆C的方程;
(Ⅱ)已知点P是圆C上的动点,试求点P到直线$\sqrt{3}$x+y-6=0的距离的最小值;
(Ⅲ)若直线L与圆C相切,且L与x,y轴的正半轴分别相交于A,B两点,求△ABC的面积最小时直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知角α终边过点P(4,-3),则下列各式中正确的是(  )
A.sinα=$\frac{3}{5}$B.cosα=-$\frac{4}{5}$C.tanα=-$\frac{3}{4}$D.tanα=-$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=sin(ωx+$\frac{π}{6}$)(ω>0)的图象与x轴的交点横坐标构成一个公差为$\frac{π}{2}$的等差数列,要得到g(x)=cos(ωx+$\frac{π}{6}$)的图象,可将f(x)的图象(  )
A.向右平移$\frac{π}{4}$个单位B.向左平移$\frac{π}{4}$个单位
C.向左平移$\frac{π}{2}$个单位D.向右平移$\frac{π}{2}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.点P(x,y)与定点F$(3\sqrt{3},0)$的距离和它到直线$l:x=4\sqrt{3}$的距离的比是常数$\frac{{\sqrt{3}}}{2}$,
(Ⅰ)求点P的轨迹方程;
(Ⅱ)若直线m与P的轨迹交于不同的两点B、C,当线段BC的中点为M(4,2)时,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.长方体ABCD-A1B1C1D1中,AB=BC=4,AA1=8,E是CC1的中点,O是下底面正方形ABCD的中心.
(1)求二面角C1-A1B1-O的大小(结果用反三角函数值表示)
(2)求异面直线A1B1与EO所成角的大小(结果用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为了检测某种水果的农药残留,要求这种水果在进入市场前必须对每箱水果进行两轮检测,只有两轮检测都合格水果才能上市销售,否则不能销售.已知每箱这种水果第一轮检测不合格的概率为$\frac{1}{9}$,第二轮检测不合格的概率为$\frac{1}{10}$,每轮检测结果只有“合格”、“不合格”两种,且两轮检测是否合格相互之间没有影响.
(Ⅰ)求每箱水果不能上市销售的概率;
(Ⅱ)如果这种水果可以上市销售,则每箱水果可获利20元;如果这种水果不能上市销售,则每箱水果亏损30元(即获利为-30元).现有这种水果4箱,记这4箱水果获利的金额为X元,求X的分布列及数学期望.

查看答案和解析>>

同步练习册答案