精英家教网 > 高中数学 > 题目详情
14.已知f(x)是定义在R上的奇函数,且对任意x∈R,都有f(x+2)=f(x)+2,则f(1)=1;$\underset{\stackrel{20}{∑}}{k=1}$f(k)=210.(注:$\sum_{k=1}^{n}$ak=a1+a2+…+an

分析 由题意可得 f(0)=0,f(x+2)=f(x)+2,由此求得f(1)、f(2)、f(3)、…、f(20)的值,可得f(1)+f(2)+f(3)+…+f(20)的值.

解答 解:∵f(x)是定义在R上的奇函数,∴f(0)=0,
又对任意x∈R,都有f(x+2)=f(x)+2,
令x=-1,可得f(1)=f(-1)+2=-f(1)+2,∴f(1)=1.
令x=0,可得f(2)=f(0)+2=2,
令x=1,可得f(3)=f(1)+2=3,
令x=2,可得f(4)=f(2)+2=4,
令x=3,可得f(5)=f(3)+2=5,…
以此类推,可得f(n)=n,n∈[1,20],
∴$\underset{\stackrel{20}{∑}}{k=1}$f(k)=f(1)+f(2)+f(3)+…+f(20)=1+2+3+…+20=210,
故答案为:1; 210.

点评 本题主要考查函数的奇偶性的性质,求函数的值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.在等差数列{an}中a3+a7=4,则a5的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某船在海面A处测得灯塔B在北偏东60°方向,与A相距6海里.船由A向正北方向航行8海里达到C处,这时灯塔B与船之间的距离为2$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设(2x+1)3=a3x3+a2x2+a1x+a0,则a0+a1+a2+a3=27.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知{an}是公差为-2的等差数列,如果a1和a5的等差中项为-1,那么a2=(  )
A.-3B.-2C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}的首项a1=1,公差d>0,且第2项,第5项,第14项分别是等比数列{bn}的第2项,第3项,第4项.
(1)求数列{an}与{bn}的通项公式;
(2)设cn=an•bn(n∈N*),求{cn}的前n项和为Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知正三角形ABC的顶点B,C在平面α内,顶点A在平面α上的射影为A′,若△A′BC为锐角三角形,则二面角A-BC-A′大小的余弦值的取值范围是($\frac{\sqrt{3}}{3}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设t∈N且0≤t<5,若92016+t能被5整除,则t=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)=4x-2x+1-3,则f(x)<0的解集为{x|x<log23}.

查看答案和解析>>

同步练习册答案