精英家教网 > 高中数学 > 题目详情
1.设t∈N且0≤t<5,若92016+t能被5整除,则t=4.

分析 根据92016+t=(10-1)2016+t,把(10-1)2016+t按照二项式定理展开,结合题意可得1+t能被5整除,由此求得t的值.

解答 解:∵92016+t=(10-1)2016+t
=C20160•102016-C20161•102015+C20162•102014+…-C20162015•101+1+t
能被5整除,t∈N且0≤t<5,
故1+t能被5整除,故t=4,
故答案为:4.

点评 本题主要考查二项式定理的应用,二项式展开式的通项公式,体现了转化的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:sinθ=ρcos2θ,过点M(-1,2)的直线l:$\left\{\begin{array}{l}{x=-1-\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数)与曲线C相交于A、B两点.求:
(1)线段AB的长度;
(2)点M(-1,2)到A、B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知f(x)是定义在R上的奇函数,且对任意x∈R,都有f(x+2)=f(x)+2,则f(1)=1;$\underset{\stackrel{20}{∑}}{k=1}$f(k)=210.(注:$\sum_{k=1}^{n}$ak=a1+a2+…+an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,AB是⊙O的直径,C是⊙O上一点,AC∥BP,BM切⊙O于B,BM交CP于M,且CM=MP.
(1)求证:CP与⊙O相切;
(2)已知CP与AB交于N,AB=2,CN=$\sqrt{3}$,求AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.
(Ⅰ)若D为AC的中点,证明:∠OED=90°;
(Ⅱ)若CE=1,OA=$\sqrt{3}$,求AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.关于x的方程lgx3=3sinx的根的个数有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图1,在平行四边形ABCD中,AB=2AD,E,F分别为AB,CD的中点,沿EF将四边形AEFD折起到新位置变为四边形A′EFD′,使A′B=A′F(如图2所示).
(1)证明:A′E⊥BF;
(2)若∠BAD=60°,A′E=$\sqrt{2}$A'B=2,求二面角A′-EF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|x+2|-|x-1|.
(1)试求f(x)的值域;
(2)设g(x)=$\frac{{a{x^2}-3x+3}}{x}$(a>0),若对任意s∈[1,+∞),t∈[0,+∞),恒有g(s)≥f(t)成立,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在空间直角坐标系中,$\overrightarrow{i}$=(1,0,0),$\overrightarrow{j}$=(0,1,0),$\overrightarrow{k}$=(0,0,1),则与$\overrightarrow{i}$,$\overrightarrow{j}$,$\overrightarrow{k}$所成角都相等的单位向量为(  )
A.(1,1,1)B.($\frac{1}{3}$,$\frac{1}{3}$,$\frac{1}{3}$)
C.($\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)D.($\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)或(-$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

同步练习册答案