精英家教网 > 高中数学 > 题目详情
16.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.
(Ⅰ)若D为AC的中点,证明:∠OED=90°;
(Ⅱ)若CE=1,OA=$\sqrt{3}$,求AE的长.

分析 (Ⅰ)连接AE和OE,由三角形和圆的知识易得∠OED=90°,可得DE是⊙O的切线;
(Ⅱ)设AE=x,由射影定理可得关于x的方程x2=$\sqrt{12-{x}^{2}}$,解方程得x值,可得AE的长.

解答 (Ⅰ)证明:连接AE,由已知得AE⊥BC,AC⊥AB,
在RT△ABC中,由已知可得DE=DC,∴∠DEC=∠DCE,
连接OE,则∠OBE=∠OEB,
又∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°,
∴∠OED=90°;
(Ⅱ)解:设AE=x,
在Rt△ABE中,BE=$\sqrt{12-{x}^{2}}$,
由射影定理可得AE2=CE•BE,
∴x2=$\sqrt{12-{x}^{2}}$,即x4+x2-12=0,
解方程可得x=$\sqrt{3}$,∴AE=$\sqrt{3}$.

点评 本题考查圆的切线的判定,涉及射影定理和三角形的知识,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.如图,在正方体ABCD-A1B1C1D1中,下列结论错误的是(  )
A.直线BD1与直线B1C所成的角为$\frac{π}{2}$
B.直线B1C与直线A1C1所成的角为$\frac{π}{3}$
C.线段BD1在平面AB1C内的射影是一个点
D.线段BD1恰被平面AB1C平分

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知{an}是公差为-2的等差数列,如果a1和a5的等差中项为-1,那么a2=(  )
A.-3B.-2C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知正三角形ABC的顶点B,C在平面α内,顶点A在平面α上的射影为A′,若△A′BC为锐角三角形,则二面角A-BC-A′大小的余弦值的取值范围是($\frac{\sqrt{3}}{3}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,直线AB为⊙O的切线,切点为B,点C、D在圆上,DB=DC,作BE⊥BD交圆于点E
(1)证明:∠CBE=∠ABE;
(2)设⊙O的半径为2,BC=2$\sqrt{3}$,延长CE交AB于点F,求△BCF外接圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设t∈N且0≤t<5,若92016+t能被5整除,则t=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=x2+ax+b存在实数x0,且有|x0|≥3,使得f(x0)=0,则a2+4b2的最小值35$\frac{1}{37}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,若(sinB+sinC):(sinC+sinA):(sinA+sinB)=4:5:6,则最大角的度数是(  )
A.60°B.90°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知△ABC的三边AB、BC、AC所在的直线方程分别为3x-4y+7=0,2x+3y-1=0,5x-y-11=0
(1)求顶点A的坐标;
(2)求BC边上的高所在直线的方程.

查看答案和解析>>

同步练习册答案