精英家教网 > 高中数学 > 题目详情
6.关于x的方程lgx3=3sinx的根的个数有(  )个.
A.1B.2C.3D.4

分析 化简方程lgx3=3sinx,然后转化为求方程sinx=lgx的实根个数,令f(x)=sinx,g(x)=lgx,只需求出函数f(x)与g(x)的交点个数,画出函数的图象,结合图象可求.

解答 解:方程lgx3=3sinx可得sinx=lgx,
令f(x)=sinx,g(x)=lgx,
做出函数的图象,结合图象可知,函数f(x)=sinx 与g(x)=lgx的图象有3个交点
故选:C

点评 本题主要考查了对数函数与正弦函数的图象的应用,方程与函数的相互转化的思想,体现了数形结合思想在解题中的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.在边长为1的等边△ABC的BC边上任取一点D,使$\frac{1}{2}$≤$\overrightarrow{AB}•\overrightarrow{AD}$≤$\frac{2}{3}$的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}的首项a1=1,公差d>0,且第2项,第5项,第14项分别是等比数列{bn}的第2项,第3项,第4项.
(1)求数列{an}与{bn}的通项公式;
(2)设cn=an•bn(n∈N*),求{cn}的前n项和为Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(Ⅰ)求不等式|2x-4|+|x+1|≥5解集;
(Ⅱ)已知a,b为正数,若直线(a-1)x+2y+6=0与直线2x+by-5=0互相垂直,求证:$\frac{1}{{a}^{2}}+\frac{1}{{b}^{2}}$≥8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设t∈N且0≤t<5,若92016+t能被5整除,则t=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x2,则函数y=f(x)-log5|x-1|的零点个数是(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,网格纸上每个小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的表面积为$9+18\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在极坐标系中,曲线C:ρ=$\frac{2}{cosθ+2sinθ}$,A,B是曲线C上的两点,O为极点,∠AOB=$\frac{π}{2}$,则△AOB面积的最小值为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设等差数列{an}前n项和为Sn,公差d≠0.
(1)若a1=1,且数列{$\frac{{S}_{n}}{{a}_{n}}$}是等差数列,求数列{an}的通项公式;
(2)证明:1,$\sqrt{3}$,2不可能是等差数列{an}中的三项.

查看答案和解析>>

同步练习册答案