精英家教网 > 高中数学 > 题目详情
9.如图,AB是⊙O的直径,C是⊙O上一点,AC∥BP,BM切⊙O于B,BM交CP于M,且CM=MP.
(1)求证:CP与⊙O相切;
(2)已知CP与AB交于N,AB=2,CN=$\sqrt{3}$,求AC的长.

分析 (1)连接BC,OC,证明△OCM≌△OBM,可得∠OCM=90°,即可证明CP与⊙O相切;
(2)由切割线定理可得:CN2=NA•NB,求出NA,利用△ACB∽△CBP求AC的长.

解答 (1)证明:连接BC,OC,
∵AB是⊙O的直径,
∴∠ACB=90°,
∵AC∥BP,
∴∠CBP=90°,
∵CM=MP,
∴MC=MB,
∵OC=OB,OM=OM,
∴△OCM≌△OBM,
∴∠OCM=90°,
∴CP与⊙O相切;
(2)解:由切割线定理可得:CN2=NA•NB,
∵AB=2,CN=$\sqrt{3}$,
∴3=NA•(NA+2),
∴NA=1,
∵AC∥BP,
∴$\frac{AC}{BP}$=$\frac{NA}{NB}$=$\frac{1}{3}$.
设AC=x,则BP=3x.
∵△ACB∽△CBP,
∴$\frac{AC}{BC}$=$\frac{BC}{BP}$,
∴BC=$\sqrt{3}$x.
在△ACB中,AB2=AC2+BC2
∴4=x2+3x2
∴x=1,
∴AC=1.

点评 本题考查直线与圆相切,考查三角形相似的判定与性质,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.若点P是曲线y=x2-lnx上一点,且在点P处的切线与直线y=x-2平行,
(1)求点P的坐标;  
(2)求函数y=x2-lnx的极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设(2x+1)3=a3x3+a2x2+a1x+a0,则a0+a1+a2+a3=27.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}的首项a1=1,公差d>0,且第2项,第5项,第14项分别是等比数列{bn}的第2项,第3项,第4项.
(1)求数列{an}与{bn}的通项公式;
(2)设cn=an•bn(n∈N*),求{cn}的前n项和为Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知正三角形ABC的顶点B,C在平面α内,顶点A在平面α上的射影为A′,若△A′BC为锐角三角形,则二面角A-BC-A′大小的余弦值的取值范围是($\frac{\sqrt{3}}{3}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(Ⅰ)求不等式|2x-4|+|x+1|≥5解集;
(Ⅱ)已知a,b为正数,若直线(a-1)x+2y+6=0与直线2x+by-5=0互相垂直,求证:$\frac{1}{{a}^{2}}+\frac{1}{{b}^{2}}$≥8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设t∈N且0≤t<5,若92016+t能被5整除,则t=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,网格纸上每个小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的表面积为$9+18\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.正方体ABCD-A1B1C1D1中,E,F分别为AB,AA1的中点,则EF与A1C1所成的角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步练习册答案