精英家教网 > 高中数学 > 题目详情
19.1337与382的最大公约数是(  )
A.191B.382C.201D.37

分析 利用辗转相除法,求出1337与382的最大公约数.

解答 解:1337=382×3+191.
382=191×2.
故1337与382的最大公约数为191.
故选:A.

点评 本题考查的知识点是最大公因数,在求两个正整数的最大公因数时,辗转相除法和更相减损术是常用的方法,要熟练掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,-π<φ<π),x∈R图象的一条对称轴是$x=\frac{3π}{8}$,且这条对称轴与此函数图象交于点$({\frac{3π}{8},2})$,这条对称轴与相邻对称轴间的曲线交x轴于点$({\frac{5π}{8},0})$.    
(1)求这个函数的解析式.
(2)求函数f(x)在[0,π]内的单调递增区间;
(3)用“五点法”作出函数f(x)在一个周期内的简图.(先列表,后画图)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若函f(x)=sin2ax-sinaxcosax(a>0)的图象与直y=m(m>0)相切,并且切点的横坐标依次成公差$\frac{π}{2}$的等差数列.
(Ⅰ)m的值;
(Ⅱ)若A(x0,y0)y=f(x)图象的对称中心,x0∈[0,$\frac{π}{2}$],求A的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知$sinα+cosα=\frac{{3\sqrt{5}}}{5}$,$α∈({\frac{π}{4},\frac{π}{2}})$,求下列各式的值:
(1)$\frac{2sinα-3cosα}{4sinα-9cosα}$;       
(2)sin2α-3sinαcosα+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=ex-1+4x-4的零点所在区间为(  )
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.方程$a=sin(2x+\frac{π}{3}),x∈[0,\frac{π}{2}]$上有解,则实数a的取值范围(  )
A.[-1,1]B.$[-\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2}]$C.$[-\frac{{\sqrt{3}}}{2},1]$D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知不共线的向量$\overrightarrow{a}$,$\overrightarrow{b}$,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,$\overrightarrow{a}$•($\overrightarrow{b}$-$\overrightarrow{a}$)=1,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,设正三棱锥P-ABC的侧棱长为l,∠APB=30°,E,F分别是BP,CP上的点,则△AEF周长的最小值为$\sqrt{2}l$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<2π)在一个周期内的部分对应值如下表:
x$-\frac{π}{2}$0$\frac{π}{6}$$\frac{π}{2}$
f(x)-11$\frac{1}{2}$-1
(Ⅰ)求f(x)的解析式;
(Ⅱ)求函数g(x)=f(x)+2sinx的最大值和最小值.

查看答案和解析>>

同步练习册答案