精英家教网 > 高中数学 > 题目详情
7.已知$sinα+cosα=\frac{{3\sqrt{5}}}{5}$,$α∈({\frac{π}{4},\frac{π}{2}})$,求下列各式的值:
(1)$\frac{2sinα-3cosα}{4sinα-9cosα}$;       
(2)sin2α-3sinαcosα+1.

分析 由条件利用同角三角函数的基本关系,求得sinα 和cosα 的值,从而求得要求式子的值.

解答 解:∵已知$sinα+cosα=\frac{{3\sqrt{5}}}{5}$,$α∈({\frac{π}{4},\frac{π}{2}})$,sin2α+cos2α=1,
∴sinα=$\frac{2\sqrt{5}}{5}$,cosα=$\frac{\sqrt{5}}{5}$,
∴(1)$\frac{2sinα-3cosα}{4sinα-9cosα}$=$\frac{\frac{\sqrt{5}}{5}}{-\frac{\sqrt{5}}{5}}$=-1;  
(2)sin2α-3sinαcosα+1=$\frac{20}{25}$-3•$\frac{2\sqrt{5}}{5}$•$\frac{\sqrt{5}}{5}$+1=$\frac{3}{5}$.

点评 本题主要考查同角三角函数的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知正项数列{an}的前n项和为sn,且a1=2,anan+1=2(Sn+1).
(1)求数列{an}的通项公式;
(2)若数列{bn}满足${b_1}=-\frac{{\sqrt{2}}}{2}$,${b_n}=\frac{1}{{{a_n}\sqrt{{a_{n-1}}}+{a_{n-1}}\sqrt{a_n}}}(n≥2,且n∈{N^*})$,求{bn}的前n项和Tn
(3)数列{cn}满足lgc1=$\frac{1}{3}$,lgcn=$\frac{{{a_{n-1}}}}{3^n}$(n≥2,且n∈N*),试问是否存在正整数p,q其中(1<p<q),使c1,cp,cq成等比数列?若存在求出满足条件所有的数组(p,q);若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=$\frac{{e}^{2}-1}{x}$,x≠0.其中e=2.71828…
(1)设h(x)=f(x)+$\frac{1}{x}$,求函数h(x)在[$\frac{1}{2}$,2]上的值域;
(2)证明:对任意正数a,存在正数x,使不等式|f(x)-1|<a成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知向量$\overrightarrow a=(x-1,2),\overrightarrow b=(2,1)$,则$\overrightarrow a⊥\overrightarrow b$的充要条件是x=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,角A、B、C所对的边分别为a、b、c,且acosB-bcosA=$\frac{1}{2}$c,当tan(A-B)取最大值时,角B的值为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.甲、乙两名运动员在某项测试中的6次成绩的茎叶图如图所示,${\overline{x}}_{1}$,${\overline{x}}_{2}$分别表示甲、乙两名运动员这项测试成绩的平均数,s${\;}_{1}^{2}$,s${\;}_{2}^{2}$分别表示甲、乙两名运动员这项测试成绩的方差,则有(  )
A.${\overline{x}}_{1}$>${\overline{x}}_{2}$,s${\;}_{1}^{2}$<${s}_{2}^{2}$B.${\overline{x}}_{1}$=${\overline{x}}_{2}$,s${\;}_{1}^{2}$>${s}_{2}^{2}$
C.${\overline{x}}_{1}$=${\overline{x}}_{2}$,s${\;}_{1}^{2}$=${s}_{2}^{2}$D.${\overline{x}}_{1}$=${\overline{x}}_{2}$,s${\;}_{1}^{2}$<${s}_{2}^{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.1337与382的最大公约数是(  )
A.191B.382C.201D.37

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在公差不为0的等差数列{an}中,2a4-a92+2a14=0,数列{bn}是等比数列,且a9=b9,则b8b10=(  )
A.4B.16C.8D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知x,y满足满足约束条件$\left\{\begin{array}{l}x+y≤10\;\\ x-y≤2\;\\ x≥3\end{array}\right.$,那么z=x2+y2的最大值为58.

查看答案和解析>>

同步练习册答案