分析 acosB-bcosA=$\frac{1}{2}$c,由正弦定理定理可得:sinAcosB-sinBcosA=$\frac{1}{2}$sinC=$\frac{1}{2}$sin(A+B),化为:tanA=3tanB>0,代入tan(A-B),再利用基本不等式的性质即可得出.
解答 解:在△ABC中,∵acosB-bcosA=$\frac{1}{2}$c,由正弦定理定理可得:sinAcosB-sinBcosA=$\frac{1}{2}$sinC=$\frac{1}{2}$sin(A+B),
化为:tanA=3tanB>0,
∴tan(A-B)=$\frac{tanA-tanB}{1+tanAtanB}$=$\frac{2tanB}{1+3ta{n}^{2}B}$=$\frac{2}{\frac{1}{tanB}+3tanB}$≤$\frac{2}{2\sqrt{\frac{1}{tanB}•3tanB}}$=$\frac{\sqrt{3}}{3}$,当且仅当tanB=$\frac{\sqrt{3}}{3}$,即B=$\frac{π}{6}$时取等号.
故答案为:$\frac{π}{6}$.
点评 本题考查了正弦定理、和差公式、基本不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{6}}}{3}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | m>n | B. | m<n | C. | m=n | D. | m≤n |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com