精英家教网 > 高中数学 > 题目详情
Δ两个顶点的坐标分别是,边所在直线的斜率之积等于,求顶点的轨迹方程,并画出草图。

试题分析:设
   
点评:求轨迹方程的题目大体分为以下几步:建系设点,寻找动点满足的关系,将关系坐标化,整理化简,除去多余点
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

与双曲线有共同的渐近线,且经过点的双曲线方程是              

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

与抛物线相切倾斜角为的直线轴和轴的交点分别是A和B,那么过A、B两点的最小圆截抛物线的准线所得的弦长为
A.4                B.2            C.2            D. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

,分别是椭圆E:+=1(0﹤b﹤1)的左、右焦点,过的直线与E相交于A、B两点,且成等差数列。
(Ⅰ)求
(Ⅱ)若直线的斜率为1,求b的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某同学用《几何画板》研究抛物线的性质:打开《几何画板》软件,绘制某抛物线,在抛物线上任意画一个点,度量点的坐标,如图.

(Ⅰ)拖动点,发现当时,,试求抛物线的方程;
(Ⅱ)设抛物线的顶点为,焦点为,构造直线交抛物线于不同两点,构造直线分别交准线于两点,构造直线.经观察得:沿着抛物线,无论怎样拖动点,恒有.请你证明这一结论.
(Ⅲ)为进一步研究该抛物线的性质,某同学进行了下面的尝试:在(Ⅱ)中,把“焦点”改变为其它“定点”,其余条件不变,发现“不再平行”.是否可以适当更改(Ⅱ)中的其它条件,使得仍有“”成立?如果可以,请写出相应的正确命题;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为椭圆两个焦点,为椭圆上一点且,则      (       )
A.3B.9C.4D.5

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆的两个焦点分别为,过作椭圆长轴的垂线交椭圆于点
为等腰直角三角形,则椭圆的离心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线C1:(p >0)的焦点F恰好是双曲线C2:(a>0,b >0)的右焦点,且它们的交点的连线过点F,则双曲线的离心率为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若双曲线的一条渐近线方程为,则此双曲线的离心率为      

查看答案和解析>>

同步练习册答案