精英家教网 > 高中数学 > 题目详情
,分别是椭圆E:+=1(0﹤b﹤1)的左、右焦点,过的直线与E相交于A、B两点,且成等差数列。
(Ⅰ)求
(Ⅱ)若直线的斜率为1,求b的值。
(1)又;(2).

试题分析:(1)由椭圆定义知

(2)L的方程式为y=x+c,其中
,则A,B 两点坐标满足方程组
 
化简得

因为直线AB的斜率为1,所以
即   .

解得 .
点评:中档题,曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题(I)求椭圆“焦点弦”弦长时,主要运用了椭圆的定义。(II)在应用韦达定理的基础上,直接应用弦长公式。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

抛物线的焦点为,点在此抛物线上,且,弦的中点在该抛物线准线上的射影为,则的最大值为(    )
A.B.C.1D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

经过点,并且对称轴都在坐标轴上的等轴双曲线的方程为(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(Ⅰ)判断曲线的切线能否与曲线相切?并说明理由;
(Ⅱ)若的最大值;
(Ⅲ)若,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

双曲线虚轴的一个端点为,两个焦点为,则双曲线的离心率为____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

直角坐标平面上,为原点,为动点,. 过点轴于,过轴于点. 记点的轨迹为曲线
,过点作直线交曲线于两个不同的点(点之间).
(1)求曲线的方程;
(2)是否存在直线,使得,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

Δ两个顶点的坐标分别是,边所在直线的斜率之积等于,求顶点的轨迹方程,并画出草图。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设椭圆和双曲线的公共焦点为是两曲线的一个交点,则=     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线上有一条长为2的动弦AB,则AB中点M到x轴的最短距离为    

查看答案和解析>>

同步练习册答案